Localization of random walks to competing manifolds of distinct dimensions

We consider localization of a random walk (RW) when attracted or repelled by multiple extended manifolds of different dimensionalities. In particular, we consider a RW near a rectangular wedge in two dimensions, where the (zero-dimensional) corner and the (one-dimensional) wall have competing locali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2018-08, Vol.98 (2-1), p.022108-022108, Article 022108
Hauptverfasser: Levi, Raz Halifa, Kantor, Yacov, Kardar, Mehran
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 022108
container_issue 2-1
container_start_page 022108
container_title Physical review. E
container_volume 98
creator Levi, Raz Halifa
Kantor, Yacov
Kardar, Mehran
description We consider localization of a random walk (RW) when attracted or repelled by multiple extended manifolds of different dimensionalities. In particular, we consider a RW near a rectangular wedge in two dimensions, where the (zero-dimensional) corner and the (one-dimensional) wall have competing localization properties. This model applies also (as cross section) to an ideal polymer attracted to the surface or edge of a rectangular wedge in three dimensions. More generally, we consider (d-1)- and (d-2)-dimensional manifolds in d-dimensional space, where attractive interactions are (fully or marginally) relevant. The RW can then be in one of four phases where it is localized to neither, one, or both manifolds. The four phases merge at a special multicritical point where (away from the manifolds) the RW spreads diffusively. Extensive numerical analyses on two-dimensional RWs confined inside or outside a rectangular wedge confirm general features expected from a continuum theory, but also exhibit unexpected attributes, such as a reentrant localization to the corner while repelled by it.
doi_str_mv 10.1103/PhysRevE.98.022108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2112613421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112613421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-ee873d97b849f51698508d8002f77368c4ccc165f7464d2a8216d59f1f0eb2593</originalsourceid><addsrcrecordid>eNo9kMlOwzAURS0EolXpD7BAWbJJeZ5ie4mqUkCVQAjWlusBAklc4hRUvp5UHVbv6uncuzgIXWKYYAz05vljk178z2yi5AQIwSBP0JAwATkAp6fHzPgAjVP6BABcgBKYnKMBBcIpk3SIHhfRmqr8M10ZmyyGrDWNi3X2a6qvlHUxs7Fe-a5s3rPaNGWIlUtbzJWpf9quD7VvUl9OF-gsmCr58f6O0Nvd7HV6ny-e5g_T20VuKRNd7r0U1CmxlEwFjgslOUgnAUgQghbSMmstLngQrGCOGElw4bgKOIBfEq7oCF3vdldt_F771Om6TNZXlWl8XCdNMCYFpozgHiU71LYxpdYHvWrL2rQbjUFvNeqDRq2k3mnsS1f7_fWy9u5YOUij_8Jobug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112613421</pqid></control><display><type>article</type><title>Localization of random walks to competing manifolds of distinct dimensions</title><source>American Physical Society Journals</source><creator>Levi, Raz Halifa ; Kantor, Yacov ; Kardar, Mehran</creator><creatorcontrib>Levi, Raz Halifa ; Kantor, Yacov ; Kardar, Mehran</creatorcontrib><description>We consider localization of a random walk (RW) when attracted or repelled by multiple extended manifolds of different dimensionalities. In particular, we consider a RW near a rectangular wedge in two dimensions, where the (zero-dimensional) corner and the (one-dimensional) wall have competing localization properties. This model applies also (as cross section) to an ideal polymer attracted to the surface or edge of a rectangular wedge in three dimensions. More generally, we consider (d-1)- and (d-2)-dimensional manifolds in d-dimensional space, where attractive interactions are (fully or marginally) relevant. The RW can then be in one of four phases where it is localized to neither, one, or both manifolds. The four phases merge at a special multicritical point where (away from the manifolds) the RW spreads diffusively. Extensive numerical analyses on two-dimensional RWs confined inside or outside a rectangular wedge confirm general features expected from a continuum theory, but also exhibit unexpected attributes, such as a reentrant localization to the corner while repelled by it.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.98.022108</identifier><identifier>PMID: 30253483</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2018-08, Vol.98 (2-1), p.022108-022108, Article 022108</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-ee873d97b849f51698508d8002f77368c4ccc165f7464d2a8216d59f1f0eb2593</citedby><cites>FETCH-LOGICAL-c347t-ee873d97b849f51698508d8002f77368c4ccc165f7464d2a8216d59f1f0eb2593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2875,2876,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30253483$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levi, Raz Halifa</creatorcontrib><creatorcontrib>Kantor, Yacov</creatorcontrib><creatorcontrib>Kardar, Mehran</creatorcontrib><title>Localization of random walks to competing manifolds of distinct dimensions</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We consider localization of a random walk (RW) when attracted or repelled by multiple extended manifolds of different dimensionalities. In particular, we consider a RW near a rectangular wedge in two dimensions, where the (zero-dimensional) corner and the (one-dimensional) wall have competing localization properties. This model applies also (as cross section) to an ideal polymer attracted to the surface or edge of a rectangular wedge in three dimensions. More generally, we consider (d-1)- and (d-2)-dimensional manifolds in d-dimensional space, where attractive interactions are (fully or marginally) relevant. The RW can then be in one of four phases where it is localized to neither, one, or both manifolds. The four phases merge at a special multicritical point where (away from the manifolds) the RW spreads diffusively. Extensive numerical analyses on two-dimensional RWs confined inside or outside a rectangular wedge confirm general features expected from a continuum theory, but also exhibit unexpected attributes, such as a reentrant localization to the corner while repelled by it.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAURS0EolXpD7BAWbJJeZ5ie4mqUkCVQAjWlusBAklc4hRUvp5UHVbv6uncuzgIXWKYYAz05vljk178z2yi5AQIwSBP0JAwATkAp6fHzPgAjVP6BABcgBKYnKMBBcIpk3SIHhfRmqr8M10ZmyyGrDWNi3X2a6qvlHUxs7Fe-a5s3rPaNGWIlUtbzJWpf9quD7VvUl9OF-gsmCr58f6O0Nvd7HV6ny-e5g_T20VuKRNd7r0U1CmxlEwFjgslOUgnAUgQghbSMmstLngQrGCOGElw4bgKOIBfEq7oCF3vdldt_F771Om6TNZXlWl8XCdNMCYFpozgHiU71LYxpdYHvWrL2rQbjUFvNeqDRq2k3mnsS1f7_fWy9u5YOUij_8Jobug</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Levi, Raz Halifa</creator><creator>Kantor, Yacov</creator><creator>Kardar, Mehran</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201808</creationdate><title>Localization of random walks to competing manifolds of distinct dimensions</title><author>Levi, Raz Halifa ; Kantor, Yacov ; Kardar, Mehran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-ee873d97b849f51698508d8002f77368c4ccc165f7464d2a8216d59f1f0eb2593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levi, Raz Halifa</creatorcontrib><creatorcontrib>Kantor, Yacov</creatorcontrib><creatorcontrib>Kardar, Mehran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levi, Raz Halifa</au><au>Kantor, Yacov</au><au>Kardar, Mehran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Localization of random walks to competing manifolds of distinct dimensions</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2018-08</date><risdate>2018</risdate><volume>98</volume><issue>2-1</issue><spage>022108</spage><epage>022108</epage><pages>022108-022108</pages><artnum>022108</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We consider localization of a random walk (RW) when attracted or repelled by multiple extended manifolds of different dimensionalities. In particular, we consider a RW near a rectangular wedge in two dimensions, where the (zero-dimensional) corner and the (one-dimensional) wall have competing localization properties. This model applies also (as cross section) to an ideal polymer attracted to the surface or edge of a rectangular wedge in three dimensions. More generally, we consider (d-1)- and (d-2)-dimensional manifolds in d-dimensional space, where attractive interactions are (fully or marginally) relevant. The RW can then be in one of four phases where it is localized to neither, one, or both manifolds. The four phases merge at a special multicritical point where (away from the manifolds) the RW spreads diffusively. Extensive numerical analyses on two-dimensional RWs confined inside or outside a rectangular wedge confirm general features expected from a continuum theory, but also exhibit unexpected attributes, such as a reentrant localization to the corner while repelled by it.</abstract><cop>United States</cop><pmid>30253483</pmid><doi>10.1103/PhysRevE.98.022108</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2018-08, Vol.98 (2-1), p.022108-022108, Article 022108
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2112613421
source American Physical Society Journals
title Localization of random walks to competing manifolds of distinct dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Localization%20of%20random%20walks%20to%20competing%20manifolds%20of%20distinct%20dimensions&rft.jtitle=Physical%20review.%20E&rft.au=Levi,%20Raz%20Halifa&rft.date=2018-08&rft.volume=98&rft.issue=2-1&rft.spage=022108&rft.epage=022108&rft.pages=022108-022108&rft.artnum=022108&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.98.022108&rft_dat=%3Cproquest_cross%3E2112613421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112613421&rft_id=info:pmid/30253483&rfr_iscdi=true