Sensitivity of Test for Overdispersion in Poisson Regression

Overdispersion or extra‐Poisson variation is very common for count data. This phenomenon arises when the variability of the counts greatly exceeds the mean under the Poisson assumption, resulting in substantial bias for the parameter estimates. To detect whether count data are overdispersed in the P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2005-04, Vol.47 (2), p.167-176
Hauptverfasser: Xiang, Liming, Lee, Andy H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 2
container_start_page 167
container_title Biometrical journal
container_volume 47
creator Xiang, Liming
Lee, Andy H.
description Overdispersion or extra‐Poisson variation is very common for count data. This phenomenon arises when the variability of the counts greatly exceeds the mean under the Poisson assumption, resulting in substantial bias for the parameter estimates. To detect whether count data are overdispersed in the Poisson regression setting, various tests have been proposed and among them, the score tests derived by Dean (1992) are popular and easy to implement. However, such tests can be sensitive to anomalous or extreme observations. In this paper, diagnostic measures are proposed for assessing the sensitivity of Dean's score test for overdispersion in Poisson regression. Applications to the well‐known fabric faults and Ames salmonella assay data sets illustrate the usefulness of the diagnostics in analyzing overdispersed count data. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
doi_str_mv 10.1002/bimj.200310096
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21123804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21091615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4736-ea3645786f92ae9cec535f2d9d89ab341ac2c336a552d14c4ae6e858962720a73</originalsourceid><addsrcrecordid>eNqN0MtvEzEQB2ALgWhauHJEe4HbBtvjp8QFSimtSosg0KPleGeRy2Y3eJJC_ns2SlR6g5Mf-uahH2PPBJ8KzuWreV7cTCXnML68ecAmQktRKw7mIZtwkFCDU_aAHRLd8JFwJR-zA2HAeS9gwl5_wZ7yKt_m1aYa2mqGtKraoVRXt1iaTEsslIe-yn31achE4_Uzfi9I298n7FEbO8Kn-_OIfX1_Mjv-UF9cnZ4dv7mok7JgaoxglLbOtF5G9AmTBt3KxjfOxzkoEZNMACZqLRuhkopo0GnnjbSSRwtH7OWu77IMP9fjhmGRKWHXxR6HNQUphATH1X9A7oUReoTTHUxlICrYhmXJi1g2QfCwDTZsgw13wY4Fz_ed1_MFNn_5PskRvNiDSCl2bYl9ynTPWSUcF6PzO_crd7j5x9jw9uzj-f0l6l1tphX-vquN5UcwFqwO15enwZ9_m106ex3ewR_uEp_n</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21091615</pqid></control><display><type>article</type><title>Sensitivity of Test for Overdispersion in Poisson Regression</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xiang, Liming ; Lee, Andy H.</creator><creatorcontrib>Xiang, Liming ; Lee, Andy H.</creatorcontrib><description>Overdispersion or extra‐Poisson variation is very common for count data. This phenomenon arises when the variability of the counts greatly exceeds the mean under the Poisson assumption, resulting in substantial bias for the parameter estimates. To detect whether count data are overdispersed in the Poisson regression setting, various tests have been proposed and among them, the score tests derived by Dean (1992) are popular and easy to implement. However, such tests can be sensitive to anomalous or extreme observations. In this paper, diagnostic measures are proposed for assessing the sensitivity of Dean's score test for overdispersion in Poisson regression. Applications to the well‐known fabric faults and Ames salmonella assay data sets illustrate the usefulness of the diagnostics in analyzing overdispersed count data. (© 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.200310096</identifier><identifier>PMID: 16389913</identifier><identifier>CODEN: BIJODN</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Applications ; Bias ; Biology, psychology, social sciences ; Biometry ; Data Interpretation, Statistical ; Distribution theory ; Exact sciences and technology ; Linear inference, regression ; Mathematics ; Medical sciences ; Mutagenicity Tests - statistics &amp; numerical data ; Overdispersion ; Perturbations ; Poisson Distribution ; Poisson regression ; Probability and statistics ; Regression Analysis ; Salmonella ; Salmonella - drug effects ; Salmonella - genetics ; Sciences and techniques of general use ; Score test ; Sensitivity and Specificity ; Statistics</subject><ispartof>Biometrical journal, 2005-04, Vol.47 (2), p.167-176</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4736-ea3645786f92ae9cec535f2d9d89ab341ac2c336a552d14c4ae6e858962720a73</citedby><cites>FETCH-LOGICAL-c4736-ea3645786f92ae9cec535f2d9d89ab341ac2c336a552d14c4ae6e858962720a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.200310096$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16741801$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16389913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiang, Liming</creatorcontrib><creatorcontrib>Lee, Andy H.</creatorcontrib><title>Sensitivity of Test for Overdispersion in Poisson Regression</title><title>Biometrical journal</title><addtitle>Biom. J</addtitle><description>Overdispersion or extra‐Poisson variation is very common for count data. This phenomenon arises when the variability of the counts greatly exceeds the mean under the Poisson assumption, resulting in substantial bias for the parameter estimates. To detect whether count data are overdispersed in the Poisson regression setting, various tests have been proposed and among them, the score tests derived by Dean (1992) are popular and easy to implement. However, such tests can be sensitive to anomalous or extreme observations. In this paper, diagnostic measures are proposed for assessing the sensitivity of Dean's score test for overdispersion in Poisson regression. Applications to the well‐known fabric faults and Ames salmonella assay data sets illustrate the usefulness of the diagnostics in analyzing overdispersed count data. (© 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</description><subject>Applications</subject><subject>Bias</subject><subject>Biology, psychology, social sciences</subject><subject>Biometry</subject><subject>Data Interpretation, Statistical</subject><subject>Distribution theory</subject><subject>Exact sciences and technology</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Medical sciences</subject><subject>Mutagenicity Tests - statistics &amp; numerical data</subject><subject>Overdispersion</subject><subject>Perturbations</subject><subject>Poisson Distribution</subject><subject>Poisson regression</subject><subject>Probability and statistics</subject><subject>Regression Analysis</subject><subject>Salmonella</subject><subject>Salmonella - drug effects</subject><subject>Salmonella - genetics</subject><subject>Sciences and techniques of general use</subject><subject>Score test</subject><subject>Sensitivity and Specificity</subject><subject>Statistics</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0MtvEzEQB2ALgWhauHJEe4HbBtvjp8QFSimtSosg0KPleGeRy2Y3eJJC_ns2SlR6g5Mf-uahH2PPBJ8KzuWreV7cTCXnML68ecAmQktRKw7mIZtwkFCDU_aAHRLd8JFwJR-zA2HAeS9gwl5_wZ7yKt_m1aYa2mqGtKraoVRXt1iaTEsslIe-yn31achE4_Uzfi9I298n7FEbO8Kn-_OIfX1_Mjv-UF9cnZ4dv7mok7JgaoxglLbOtF5G9AmTBt3KxjfOxzkoEZNMACZqLRuhkopo0GnnjbSSRwtH7OWu77IMP9fjhmGRKWHXxR6HNQUphATH1X9A7oUReoTTHUxlICrYhmXJi1g2QfCwDTZsgw13wY4Fz_ed1_MFNn_5PskRvNiDSCl2bYl9ynTPWSUcF6PzO_crd7j5x9jw9uzj-f0l6l1tphX-vquN5UcwFqwO15enwZ9_m106ex3ewR_uEp_n</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Xiang, Liming</creator><creator>Lee, Andy H.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200504</creationdate><title>Sensitivity of Test for Overdispersion in Poisson Regression</title><author>Xiang, Liming ; Lee, Andy H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4736-ea3645786f92ae9cec535f2d9d89ab341ac2c336a552d14c4ae6e858962720a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applications</topic><topic>Bias</topic><topic>Biology, psychology, social sciences</topic><topic>Biometry</topic><topic>Data Interpretation, Statistical</topic><topic>Distribution theory</topic><topic>Exact sciences and technology</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Medical sciences</topic><topic>Mutagenicity Tests - statistics &amp; numerical data</topic><topic>Overdispersion</topic><topic>Perturbations</topic><topic>Poisson Distribution</topic><topic>Poisson regression</topic><topic>Probability and statistics</topic><topic>Regression Analysis</topic><topic>Salmonella</topic><topic>Salmonella - drug effects</topic><topic>Salmonella - genetics</topic><topic>Sciences and techniques of general use</topic><topic>Score test</topic><topic>Sensitivity and Specificity</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Liming</creatorcontrib><creatorcontrib>Lee, Andy H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Liming</au><au>Lee, Andy H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity of Test for Overdispersion in Poisson Regression</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom. J</addtitle><date>2005-04</date><risdate>2005</risdate><volume>47</volume><issue>2</issue><spage>167</spage><epage>176</epage><pages>167-176</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><coden>BIJODN</coden><abstract>Overdispersion or extra‐Poisson variation is very common for count data. This phenomenon arises when the variability of the counts greatly exceeds the mean under the Poisson assumption, resulting in substantial bias for the parameter estimates. To detect whether count data are overdispersed in the Poisson regression setting, various tests have been proposed and among them, the score tests derived by Dean (1992) are popular and easy to implement. However, such tests can be sensitive to anomalous or extreme observations. In this paper, diagnostic measures are proposed for assessing the sensitivity of Dean's score test for overdispersion in Poisson regression. Applications to the well‐known fabric faults and Ames salmonella assay data sets illustrate the usefulness of the diagnostics in analyzing overdispersed count data. (© 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><pmid>16389913</pmid><doi>10.1002/bimj.200310096</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2005-04, Vol.47 (2), p.167-176
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_21123804
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Applications
Bias
Biology, psychology, social sciences
Biometry
Data Interpretation, Statistical
Distribution theory
Exact sciences and technology
Linear inference, regression
Mathematics
Medical sciences
Mutagenicity Tests - statistics & numerical data
Overdispersion
Perturbations
Poisson Distribution
Poisson regression
Probability and statistics
Regression Analysis
Salmonella
Salmonella - drug effects
Salmonella - genetics
Sciences and techniques of general use
Score test
Sensitivity and Specificity
Statistics
title Sensitivity of Test for Overdispersion in Poisson Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T02%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20of%20Test%20for%20Overdispersion%20in%20Poisson%20Regression&rft.jtitle=Biometrical%20journal&rft.au=Xiang,%20Liming&rft.date=2005-04&rft.volume=47&rft.issue=2&rft.spage=167&rft.epage=176&rft.pages=167-176&rft.issn=0323-3847&rft.eissn=1521-4036&rft.coden=BIJODN&rft_id=info:doi/10.1002/bimj.200310096&rft_dat=%3Cproquest_cross%3E21091615%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21091615&rft_id=info:pmid/16389913&rfr_iscdi=true