Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia
Spinal sensorimotor networks that are functionally disconnected from the brain because of spinal cord injury (SCI) can be facilitated via epidural electrical stimulation (EES) to restore robust, coordinated motor activity in humans with paralysis 1 – 3 . Previously, we reported a clinical case of co...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2018-11, Vol.24 (11), p.1677-1682 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1682 |
---|---|
container_issue | 11 |
container_start_page | 1677 |
container_title | Nature medicine |
container_volume | 24 |
creator | Gill, Megan L. Grahn, Peter J. Calvert, Jonathan S. Linde, Margaux B. Lavrov, Igor A. Strommen, Jeffrey A. Beck, Lisa A. Sayenko, Dimitry G. Van Straaten, Meegan G. Drubach, Dina I. Veith, Daniel D. Thoreson, Andrew R. Lopez, Cesar Gerasimenko, Yury P. Edgerton, V. Reggie Lee, Kendall H. Zhao, Kristin D. |
description | Spinal sensorimotor networks that are functionally disconnected from the brain because of spinal cord injury (SCI) can be facilitated via epidural electrical stimulation (EES) to restore robust, coordinated motor activity in humans with paralysis
1
–
3
. Previously, we reported a clinical case of complete sensorimotor paralysis of the lower extremities in which EES restored the ability to stand and the ability to control step-like activity while side-lying or suspended vertically in a body-weight support system (BWS)
4
. Since then, dynamic task-specific training in the presence of EES, termed multimodal rehabilitation (MMR), was performed for 43 weeks and resulted in bilateral stepping on a treadmill, independent from trainer assistance or BWS. Additionally, MMR enabled independent stepping over ground while using a front-wheeled walker with trainer assistance at the hips to maintain balance. Furthermore, MMR engaged sensorimotor networks to achieve dynamic performance of standing and stepping. To our knowledge, this is the first report of independent stepping enabled by task-specific training in the presence of EES by a human with complete loss of lower extremity sensorimotor function due to SCI.
In a human subject with chronic paraplegia, a combination of epidural electrical stimulation and long-term rehabilitative training have culminated in the first report of unassisted, voluntary independent stepping in a paralyzed individual. |
doi_str_mv | 10.1038/s41591-018-0175-7 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2112204388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A573111893</galeid><sourcerecordid>A573111893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-f537b86e9d0178d92526a02dd2dd2b0cd07e631d318c92d370e56b12c1755e33</originalsourceid><addsrcrecordid>eNqNkltrFTEQxxex2Fr9AL7IgiD6sDWXzW7yWIqXQmlBi_gWssnsdms22SZZ1G9vltOLR44gucyQ_GbCTP5F8QKjI4wofxdrzASuEOZ5taxqHxUHmNVNhVv07XH2UcsrLlizXzyN8RohRBETT4p9ighDuEYHBZzDEvzkzWJVGr0rfV_aZep8VDooW8Z5dNk4SD98-B5LcKqzEMvRGZghby6VMcGcsaFUfYJQaj_NFhKUswoqe8OonhV7vbIRnt_aw-Lyw_vLk0_V2cXH05Pjs0o3NUlVz2jb8QaEyeVwIwgjjULEmHV2SBvUQkOxoZhrQQxtEbCmw0Tn4hlQeli82aSdg79ZICY5jVGDtcqBX6IkGBOCasp5Rl_9hV77JeRSVyq3RzSC1Q_UoCzI0fU-BaXXpPKYtRRjzMX6bLWDGsBB7qB30I_5eIs_2sHnYWAa9c6At1sBmUnwMw1qiVGefvn8_-zF12329R_sFSibrqK3yyqEuA3iDaiDjzFAL-cwTir8khjJVYpyI0WZpShXKco2x7y87fDSTWDuI-60lwGyAWK-cgOEhy_4d9bfYs3lNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2130296954</pqid></control><display><type>article</type><title>Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gill, Megan L. ; Grahn, Peter J. ; Calvert, Jonathan S. ; Linde, Margaux B. ; Lavrov, Igor A. ; Strommen, Jeffrey A. ; Beck, Lisa A. ; Sayenko, Dimitry G. ; Van Straaten, Meegan G. ; Drubach, Dina I. ; Veith, Daniel D. ; Thoreson, Andrew R. ; Lopez, Cesar ; Gerasimenko, Yury P. ; Edgerton, V. Reggie ; Lee, Kendall H. ; Zhao, Kristin D.</creator><creatorcontrib>Gill, Megan L. ; Grahn, Peter J. ; Calvert, Jonathan S. ; Linde, Margaux B. ; Lavrov, Igor A. ; Strommen, Jeffrey A. ; Beck, Lisa A. ; Sayenko, Dimitry G. ; Van Straaten, Meegan G. ; Drubach, Dina I. ; Veith, Daniel D. ; Thoreson, Andrew R. ; Lopez, Cesar ; Gerasimenko, Yury P. ; Edgerton, V. Reggie ; Lee, Kendall H. ; Zhao, Kristin D.</creatorcontrib><description>Spinal sensorimotor networks that are functionally disconnected from the brain because of spinal cord injury (SCI) can be facilitated via epidural electrical stimulation (EES) to restore robust, coordinated motor activity in humans with paralysis
1
–
3
. Previously, we reported a clinical case of complete sensorimotor paralysis of the lower extremities in which EES restored the ability to stand and the ability to control step-like activity while side-lying or suspended vertically in a body-weight support system (BWS)
4
. Since then, dynamic task-specific training in the presence of EES, termed multimodal rehabilitation (MMR), was performed for 43 weeks and resulted in bilateral stepping on a treadmill, independent from trainer assistance or BWS. Additionally, MMR enabled independent stepping over ground while using a front-wheeled walker with trainer assistance at the hips to maintain balance. Furthermore, MMR engaged sensorimotor networks to achieve dynamic performance of standing and stepping. To our knowledge, this is the first report of independent stepping enabled by task-specific training in the presence of EES by a human with complete loss of lower extremity sensorimotor function due to SCI.
In a human subject with chronic paraplegia, a combination of epidural electrical stimulation and long-term rehabilitative training have culminated in the first report of unassisted, voluntary independent stepping in a paralyzed individual.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-018-0175-7</identifier><identifier>PMID: 30250140</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/1687/1825 ; 631/378/2632 ; 692/700/565/491 ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedicine ; Body weight ; Brain ; Cancer Research ; Care and treatment ; Electrical stimuli ; Extremities ; Fitness equipment ; Health aspects ; Hip ; Infectious Diseases ; Legs ; Letter ; Lumbosacral region ; Medicine ; Metabolic Diseases ; Methods ; Molecular Medicine ; Motor activity ; Networks ; Neural stimulation ; Neuromodulation ; Neurosciences ; Paralysis ; Paraplegia ; Patient outcomes ; Physiology ; Rehabilitation ; Sensorimotor system ; Spinal cord injuries ; Stability ; Support systems ; Training ; Weight</subject><ispartof>Nature medicine, 2018-11, Vol.24 (11), p.1677-1682</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Nov 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-f537b86e9d0178d92526a02dd2dd2b0cd07e631d318c92d370e56b12c1755e33</citedby><cites>FETCH-LOGICAL-c642t-f537b86e9d0178d92526a02dd2dd2b0cd07e631d318c92d370e56b12c1755e33</cites><orcidid>0000-0001-7197-9082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-018-0175-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-018-0175-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30250140$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gill, Megan L.</creatorcontrib><creatorcontrib>Grahn, Peter J.</creatorcontrib><creatorcontrib>Calvert, Jonathan S.</creatorcontrib><creatorcontrib>Linde, Margaux B.</creatorcontrib><creatorcontrib>Lavrov, Igor A.</creatorcontrib><creatorcontrib>Strommen, Jeffrey A.</creatorcontrib><creatorcontrib>Beck, Lisa A.</creatorcontrib><creatorcontrib>Sayenko, Dimitry G.</creatorcontrib><creatorcontrib>Van Straaten, Meegan G.</creatorcontrib><creatorcontrib>Drubach, Dina I.</creatorcontrib><creatorcontrib>Veith, Daniel D.</creatorcontrib><creatorcontrib>Thoreson, Andrew R.</creatorcontrib><creatorcontrib>Lopez, Cesar</creatorcontrib><creatorcontrib>Gerasimenko, Yury P.</creatorcontrib><creatorcontrib>Edgerton, V. Reggie</creatorcontrib><creatorcontrib>Lee, Kendall H.</creatorcontrib><creatorcontrib>Zhao, Kristin D.</creatorcontrib><title>Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Spinal sensorimotor networks that are functionally disconnected from the brain because of spinal cord injury (SCI) can be facilitated via epidural electrical stimulation (EES) to restore robust, coordinated motor activity in humans with paralysis
1
–
3
. Previously, we reported a clinical case of complete sensorimotor paralysis of the lower extremities in which EES restored the ability to stand and the ability to control step-like activity while side-lying or suspended vertically in a body-weight support system (BWS)
4
. Since then, dynamic task-specific training in the presence of EES, termed multimodal rehabilitation (MMR), was performed for 43 weeks and resulted in bilateral stepping on a treadmill, independent from trainer assistance or BWS. Additionally, MMR enabled independent stepping over ground while using a front-wheeled walker with trainer assistance at the hips to maintain balance. Furthermore, MMR engaged sensorimotor networks to achieve dynamic performance of standing and stepping. To our knowledge, this is the first report of independent stepping enabled by task-specific training in the presence of EES by a human with complete loss of lower extremity sensorimotor function due to SCI.
In a human subject with chronic paraplegia, a combination of epidural electrical stimulation and long-term rehabilitative training have culminated in the first report of unassisted, voluntary independent stepping in a paralyzed individual.</description><subject>631/378/1687/1825</subject><subject>631/378/2632</subject><subject>692/700/565/491</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedicine</subject><subject>Body weight</subject><subject>Brain</subject><subject>Cancer Research</subject><subject>Care and treatment</subject><subject>Electrical stimuli</subject><subject>Extremities</subject><subject>Fitness equipment</subject><subject>Health aspects</subject><subject>Hip</subject><subject>Infectious Diseases</subject><subject>Legs</subject><subject>Letter</subject><subject>Lumbosacral region</subject><subject>Medicine</subject><subject>Metabolic Diseases</subject><subject>Methods</subject><subject>Molecular Medicine</subject><subject>Motor activity</subject><subject>Networks</subject><subject>Neural stimulation</subject><subject>Neuromodulation</subject><subject>Neurosciences</subject><subject>Paralysis</subject><subject>Paraplegia</subject><subject>Patient outcomes</subject><subject>Physiology</subject><subject>Rehabilitation</subject><subject>Sensorimotor system</subject><subject>Spinal cord injuries</subject><subject>Stability</subject><subject>Support systems</subject><subject>Training</subject><subject>Weight</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkltrFTEQxxex2Fr9AL7IgiD6sDWXzW7yWIqXQmlBi_gWssnsdms22SZZ1G9vltOLR44gucyQ_GbCTP5F8QKjI4wofxdrzASuEOZ5taxqHxUHmNVNhVv07XH2UcsrLlizXzyN8RohRBETT4p9ighDuEYHBZzDEvzkzWJVGr0rfV_aZep8VDooW8Z5dNk4SD98-B5LcKqzEMvRGZghby6VMcGcsaFUfYJQaj_NFhKUswoqe8OonhV7vbIRnt_aw-Lyw_vLk0_V2cXH05Pjs0o3NUlVz2jb8QaEyeVwIwgjjULEmHV2SBvUQkOxoZhrQQxtEbCmw0Tn4hlQeli82aSdg79ZICY5jVGDtcqBX6IkGBOCasp5Rl_9hV77JeRSVyq3RzSC1Q_UoCzI0fU-BaXXpPKYtRRjzMX6bLWDGsBB7qB30I_5eIs_2sHnYWAa9c6At1sBmUnwMw1qiVGefvn8_-zF12329R_sFSibrqK3yyqEuA3iDaiDjzFAL-cwTir8khjJVYpyI0WZpShXKco2x7y87fDSTWDuI-60lwGyAWK-cgOEhy_4d9bfYs3lNg</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Gill, Megan L.</creator><creator>Grahn, Peter J.</creator><creator>Calvert, Jonathan S.</creator><creator>Linde, Margaux B.</creator><creator>Lavrov, Igor A.</creator><creator>Strommen, Jeffrey A.</creator><creator>Beck, Lisa A.</creator><creator>Sayenko, Dimitry G.</creator><creator>Van Straaten, Meegan G.</creator><creator>Drubach, Dina I.</creator><creator>Veith, Daniel D.</creator><creator>Thoreson, Andrew R.</creator><creator>Lopez, Cesar</creator><creator>Gerasimenko, Yury P.</creator><creator>Edgerton, V. Reggie</creator><creator>Lee, Kendall H.</creator><creator>Zhao, Kristin D.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7197-9082</orcidid></search><sort><creationdate>20181101</creationdate><title>Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia</title><author>Gill, Megan L. ; Grahn, Peter J. ; Calvert, Jonathan S. ; Linde, Margaux B. ; Lavrov, Igor A. ; Strommen, Jeffrey A. ; Beck, Lisa A. ; Sayenko, Dimitry G. ; Van Straaten, Meegan G. ; Drubach, Dina I. ; Veith, Daniel D. ; Thoreson, Andrew R. ; Lopez, Cesar ; Gerasimenko, Yury P. ; Edgerton, V. Reggie ; Lee, Kendall H. ; Zhao, Kristin D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-f537b86e9d0178d92526a02dd2dd2b0cd07e631d318c92d370e56b12c1755e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/378/1687/1825</topic><topic>631/378/2632</topic><topic>692/700/565/491</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedicine</topic><topic>Body weight</topic><topic>Brain</topic><topic>Cancer Research</topic><topic>Care and treatment</topic><topic>Electrical stimuli</topic><topic>Extremities</topic><topic>Fitness equipment</topic><topic>Health aspects</topic><topic>Hip</topic><topic>Infectious Diseases</topic><topic>Legs</topic><topic>Letter</topic><topic>Lumbosacral region</topic><topic>Medicine</topic><topic>Metabolic Diseases</topic><topic>Methods</topic><topic>Molecular Medicine</topic><topic>Motor activity</topic><topic>Networks</topic><topic>Neural stimulation</topic><topic>Neuromodulation</topic><topic>Neurosciences</topic><topic>Paralysis</topic><topic>Paraplegia</topic><topic>Patient outcomes</topic><topic>Physiology</topic><topic>Rehabilitation</topic><topic>Sensorimotor system</topic><topic>Spinal cord injuries</topic><topic>Stability</topic><topic>Support systems</topic><topic>Training</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gill, Megan L.</creatorcontrib><creatorcontrib>Grahn, Peter J.</creatorcontrib><creatorcontrib>Calvert, Jonathan S.</creatorcontrib><creatorcontrib>Linde, Margaux B.</creatorcontrib><creatorcontrib>Lavrov, Igor A.</creatorcontrib><creatorcontrib>Strommen, Jeffrey A.</creatorcontrib><creatorcontrib>Beck, Lisa A.</creatorcontrib><creatorcontrib>Sayenko, Dimitry G.</creatorcontrib><creatorcontrib>Van Straaten, Meegan G.</creatorcontrib><creatorcontrib>Drubach, Dina I.</creatorcontrib><creatorcontrib>Veith, Daniel D.</creatorcontrib><creatorcontrib>Thoreson, Andrew R.</creatorcontrib><creatorcontrib>Lopez, Cesar</creatorcontrib><creatorcontrib>Gerasimenko, Yury P.</creatorcontrib><creatorcontrib>Edgerton, V. Reggie</creatorcontrib><creatorcontrib>Lee, Kendall H.</creatorcontrib><creatorcontrib>Zhao, Kristin D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gill, Megan L.</au><au>Grahn, Peter J.</au><au>Calvert, Jonathan S.</au><au>Linde, Margaux B.</au><au>Lavrov, Igor A.</au><au>Strommen, Jeffrey A.</au><au>Beck, Lisa A.</au><au>Sayenko, Dimitry G.</au><au>Van Straaten, Meegan G.</au><au>Drubach, Dina I.</au><au>Veith, Daniel D.</au><au>Thoreson, Andrew R.</au><au>Lopez, Cesar</au><au>Gerasimenko, Yury P.</au><au>Edgerton, V. Reggie</au><au>Lee, Kendall H.</au><au>Zhao, Kristin D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>24</volume><issue>11</issue><spage>1677</spage><epage>1682</epage><pages>1677-1682</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Spinal sensorimotor networks that are functionally disconnected from the brain because of spinal cord injury (SCI) can be facilitated via epidural electrical stimulation (EES) to restore robust, coordinated motor activity in humans with paralysis
1
–
3
. Previously, we reported a clinical case of complete sensorimotor paralysis of the lower extremities in which EES restored the ability to stand and the ability to control step-like activity while side-lying or suspended vertically in a body-weight support system (BWS)
4
. Since then, dynamic task-specific training in the presence of EES, termed multimodal rehabilitation (MMR), was performed for 43 weeks and resulted in bilateral stepping on a treadmill, independent from trainer assistance or BWS. Additionally, MMR enabled independent stepping over ground while using a front-wheeled walker with trainer assistance at the hips to maintain balance. Furthermore, MMR engaged sensorimotor networks to achieve dynamic performance of standing and stepping. To our knowledge, this is the first report of independent stepping enabled by task-specific training in the presence of EES by a human with complete loss of lower extremity sensorimotor function due to SCI.
In a human subject with chronic paraplegia, a combination of epidural electrical stimulation and long-term rehabilitative training have culminated in the first report of unassisted, voluntary independent stepping in a paralyzed individual.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30250140</pmid><doi>10.1038/s41591-018-0175-7</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7197-9082</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2018-11, Vol.24 (11), p.1677-1682 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_proquest_miscellaneous_2112204388 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/378/1687/1825 631/378/2632 692/700/565/491 Biomedical and Life Sciences Biomedical engineering Biomedicine Body weight Brain Cancer Research Care and treatment Electrical stimuli Extremities Fitness equipment Health aspects Hip Infectious Diseases Legs Letter Lumbosacral region Medicine Metabolic Diseases Methods Molecular Medicine Motor activity Networks Neural stimulation Neuromodulation Neurosciences Paralysis Paraplegia Patient outcomes Physiology Rehabilitation Sensorimotor system Spinal cord injuries Stability Support systems Training Weight |
title | Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T12%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuromodulation%20of%20lumbosacral%20spinal%20networks%20enables%20independent%20stepping%20after%20complete%20paraplegia&rft.jtitle=Nature%20medicine&rft.au=Gill,%20Megan%20L.&rft.date=2018-11-01&rft.volume=24&rft.issue=11&rft.spage=1677&rft.epage=1682&rft.pages=1677-1682&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-018-0175-7&rft_dat=%3Cgale_proqu%3EA573111893%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2130296954&rft_id=info:pmid/30250140&rft_galeid=A573111893&rfr_iscdi=true |