The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets
Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning...
Gespeichert in:
Veröffentlicht in: | Behavior Research Methods 2019-08, Vol.51 (4), p.1531-1543 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1543 |
---|---|
container_issue | 4 |
container_start_page | 1531 |
container_title | Behavior Research Methods |
container_volume | 51 |
creator | Steyvers, Mark Benjamin, Aaron S. |
description | Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning using these data sets must simultaneously model performance–that is, the learning function–and participation. Using a data set of 54 million gameplays from the online brain training site
Lumosity
, we show that learning functions of participants are systematically biased by participation policies that vary with age. Older adults who are poorer performers are more likely to drop out than older adults who perform well. Younger adults show no such effect. Using this knowledge, we can extrapolate group learning functions that correct for these age-related differences in dropout. |
doi_str_mv | 10.3758/s13428-018-1128-2 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2112198108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714174191</galeid><sourcerecordid>A714174191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-cab6342a38bc919464f912444bc90ddfb55bbc97a707c228d8fd0dda35eb96453</originalsourceid><addsrcrecordid>eNp1UUtv1jAQjBAVLW1_ABdkiQuXtF7HThxuVVUeUiUu5Ww5zvrDnxI72I4Ed344DikPISEfvDuaGe3uVNULoFdNJ-R1goYzWVOQNUAp2JPqDITgdSOYfPpXfVo9T-lIaSMZ8GfVaUOZAErbs-r7w2ckx-B8Jib4HN2wZhc8CZYsOmZn3KJ_AtqPZMFoQ5y1N0hyIBPq6J0_ELt6s5HSG3L3dZlC3MBcjNFaNDltbvqAxHky6XjAOhk9IRl11iRhThfVidVTwsvH_7z69Pbu4fZ9ff_x3Yfbm_vacMlybfTQloV1IwfTQ89bbntgnPPS0nG0gxBDKTvd0c4wJkdpx4LrRuDQt1w059Xr3XeJ4cuKKavZJYPTpD2GNSlWrgi9BCoL9dU_1GNYoy_TKcY6xtoWYGNd7axD2Uc5b0OO2pQ34uzKPdG6gt90wKHj0EMRwC4wMaQU0aolulnHbwqo2jJVe6aqZKq2TBUrmpePo6zDjONvxa8QC4HthLRsl8f4Z9b_u_4AEZ2tPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272266118</pqid></control><display><type>article</type><title>The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Steyvers, Mark ; Benjamin, Aaron S.</creator><creatorcontrib>Steyvers, Mark ; Benjamin, Aaron S.</creatorcontrib><description>Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning using these data sets must simultaneously model performance–that is, the learning function–and participation. Using a data set of 54 million gameplays from the online brain training site
Lumosity
, we show that learning functions of participants are systematically biased by participation policies that vary with age. Older adults who are poorer performers are more likely to drop out than older adults who perform well. Younger adults show no such effect. Using this knowledge, we can extrapolate group learning functions that correct for these age-related differences in dropout.</description><identifier>ISSN: 1554-3528</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-018-1128-2</identifier><identifier>PMID: 30251006</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Age factors ; Analysis ; Behavioral Science and Psychology ; Cognitive Psychology ; Datasets ; Internet ; Learning ; Missing data ; Older people ; Online games ; Psychology</subject><ispartof>Behavior Research Methods, 2019-08, Vol.51 (4), p.1531-1543</ispartof><rights>Psychonomic Society, Inc. 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-cab6342a38bc919464f912444bc90ddfb55bbc97a707c228d8fd0dda35eb96453</citedby><cites>FETCH-LOGICAL-c482t-cab6342a38bc919464f912444bc90ddfb55bbc97a707c228d8fd0dda35eb96453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-018-1128-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-018-1128-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30251006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steyvers, Mark</creatorcontrib><creatorcontrib>Benjamin, Aaron S.</creatorcontrib><title>The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning using these data sets must simultaneously model performance–that is, the learning function–and participation. Using a data set of 54 million gameplays from the online brain training site
Lumosity
, we show that learning functions of participants are systematically biased by participation policies that vary with age. Older adults who are poorer performers are more likely to drop out than older adults who perform well. Younger adults show no such effect. Using this knowledge, we can extrapolate group learning functions that correct for these age-related differences in dropout.</description><subject>Age factors</subject><subject>Analysis</subject><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Datasets</subject><subject>Internet</subject><subject>Learning</subject><subject>Missing data</subject><subject>Older people</subject><subject>Online games</subject><subject>Psychology</subject><issn>1554-3528</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UUtv1jAQjBAVLW1_ABdkiQuXtF7HThxuVVUeUiUu5Ww5zvrDnxI72I4Ed344DikPISEfvDuaGe3uVNULoFdNJ-R1goYzWVOQNUAp2JPqDITgdSOYfPpXfVo9T-lIaSMZ8GfVaUOZAErbs-r7w2ckx-B8Jib4HN2wZhc8CZYsOmZn3KJ_AtqPZMFoQ5y1N0hyIBPq6J0_ELt6s5HSG3L3dZlC3MBcjNFaNDltbvqAxHky6XjAOhk9IRl11iRhThfVidVTwsvH_7z69Pbu4fZ9ff_x3Yfbm_vacMlybfTQloV1IwfTQ89bbntgnPPS0nG0gxBDKTvd0c4wJkdpx4LrRuDQt1w059Xr3XeJ4cuKKavZJYPTpD2GNSlWrgi9BCoL9dU_1GNYoy_TKcY6xtoWYGNd7axD2Uc5b0OO2pQ34uzKPdG6gt90wKHj0EMRwC4wMaQU0aolulnHbwqo2jJVe6aqZKq2TBUrmpePo6zDjONvxa8QC4HthLRsl8f4Z9b_u_4AEZ2tPA</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Steyvers, Mark</creator><creator>Benjamin, Aaron S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20190815</creationdate><title>The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets</title><author>Steyvers, Mark ; Benjamin, Aaron S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-cab6342a38bc919464f912444bc90ddfb55bbc97a707c228d8fd0dda35eb96453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Age factors</topic><topic>Analysis</topic><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Datasets</topic><topic>Internet</topic><topic>Learning</topic><topic>Missing data</topic><topic>Older people</topic><topic>Online games</topic><topic>Psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steyvers, Mark</creatorcontrib><creatorcontrib>Benjamin, Aaron S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steyvers, Mark</au><au>Benjamin, Aaron S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>1531</spage><epage>1543</epage><pages>1531-1543</pages><issn>1554-3528</issn><eissn>1554-3528</eissn><abstract>Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning using these data sets must simultaneously model performance–that is, the learning function–and participation. Using a data set of 54 million gameplays from the online brain training site
Lumosity
, we show that learning functions of participants are systematically biased by participation policies that vary with age. Older adults who are poorer performers are more likely to drop out than older adults who perform well. Younger adults show no such effect. Using this knowledge, we can extrapolate group learning functions that correct for these age-related differences in dropout.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30251006</pmid><doi>10.3758/s13428-018-1128-2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-3528 |
ispartof | Behavior Research Methods, 2019-08, Vol.51 (4), p.1531-1543 |
issn | 1554-3528 1554-3528 |
language | eng |
recordid | cdi_proquest_miscellaneous_2112198108 |
source | SpringerLink Journals - AutoHoldings |
subjects | Age factors Analysis Behavioral Science and Psychology Cognitive Psychology Datasets Internet Learning Missing data Older people Online games Psychology |
title | The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20joint%20contribution%20of%20participation%20and%20performance%20to%20learning%20functions:%20Exploring%20the%20effects%20of%20age%20in%20large-scale%20data%20sets&rft.jtitle=Behavior%20Research%20Methods&rft.au=Steyvers,%20Mark&rft.date=2019-08-15&rft.volume=51&rft.issue=4&rft.spage=1531&rft.epage=1543&rft.pages=1531-1543&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-018-1128-2&rft_dat=%3Cgale_proqu%3EA714174191%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272266118&rft_id=info:pmid/30251006&rft_galeid=A714174191&rfr_iscdi=true |