The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets

Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior Research Methods 2019-08, Vol.51 (4), p.1531-1543
Hauptverfasser: Steyvers, Mark, Benjamin, Aaron S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1543
container_issue 4
container_start_page 1531
container_title Behavior Research Methods
container_volume 51
creator Steyvers, Mark
Benjamin, Aaron S.
description Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning using these data sets must simultaneously model performance–that is, the learning function–and participation. Using a data set of 54 million gameplays from the online brain training site Lumosity , we show that learning functions of participants are systematically biased by participation policies that vary with age. Older adults who are poorer performers are more likely to drop out than older adults who perform well. Younger adults show no such effect. Using this knowledge, we can extrapolate group learning functions that correct for these age-related differences in dropout.
doi_str_mv 10.3758/s13428-018-1128-2
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2112198108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714174191</galeid><sourcerecordid>A714174191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-cab6342a38bc919464f912444bc90ddfb55bbc97a707c228d8fd0dda35eb96453</originalsourceid><addsrcrecordid>eNp1UUtv1jAQjBAVLW1_ABdkiQuXtF7HThxuVVUeUiUu5Ww5zvrDnxI72I4Ed344DikPISEfvDuaGe3uVNULoFdNJ-R1goYzWVOQNUAp2JPqDITgdSOYfPpXfVo9T-lIaSMZ8GfVaUOZAErbs-r7w2ckx-B8Jib4HN2wZhc8CZYsOmZn3KJ_AtqPZMFoQ5y1N0hyIBPq6J0_ELt6s5HSG3L3dZlC3MBcjNFaNDltbvqAxHky6XjAOhk9IRl11iRhThfVidVTwsvH_7z69Pbu4fZ9ff_x3Yfbm_vacMlybfTQloV1IwfTQ89bbntgnPPS0nG0gxBDKTvd0c4wJkdpx4LrRuDQt1w059Xr3XeJ4cuKKavZJYPTpD2GNSlWrgi9BCoL9dU_1GNYoy_TKcY6xtoWYGNd7axD2Uc5b0OO2pQ34uzKPdG6gt90wKHj0EMRwC4wMaQU0aolulnHbwqo2jJVe6aqZKq2TBUrmpePo6zDjONvxa8QC4HthLRsl8f4Z9b_u_4AEZ2tPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2272266118</pqid></control><display><type>article</type><title>The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Steyvers, Mark ; Benjamin, Aaron S.</creator><creatorcontrib>Steyvers, Mark ; Benjamin, Aaron S.</creatorcontrib><description>Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning using these data sets must simultaneously model performance–that is, the learning function–and participation. Using a data set of 54 million gameplays from the online brain training site Lumosity , we show that learning functions of participants are systematically biased by participation policies that vary with age. Older adults who are poorer performers are more likely to drop out than older adults who perform well. Younger adults show no such effect. Using this knowledge, we can extrapolate group learning functions that correct for these age-related differences in dropout.</description><identifier>ISSN: 1554-3528</identifier><identifier>EISSN: 1554-3528</identifier><identifier>DOI: 10.3758/s13428-018-1128-2</identifier><identifier>PMID: 30251006</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Age factors ; Analysis ; Behavioral Science and Psychology ; Cognitive Psychology ; Datasets ; Internet ; Learning ; Missing data ; Older people ; Online games ; Psychology</subject><ispartof>Behavior Research Methods, 2019-08, Vol.51 (4), p.1531-1543</ispartof><rights>Psychonomic Society, Inc. 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-cab6342a38bc919464f912444bc90ddfb55bbc97a707c228d8fd0dda35eb96453</citedby><cites>FETCH-LOGICAL-c482t-cab6342a38bc919464f912444bc90ddfb55bbc97a707c228d8fd0dda35eb96453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3758/s13428-018-1128-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3758/s13428-018-1128-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30251006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steyvers, Mark</creatorcontrib><creatorcontrib>Benjamin, Aaron S.</creatorcontrib><title>The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets</title><title>Behavior Research Methods</title><addtitle>Behav Res</addtitle><addtitle>Behav Res Methods</addtitle><description>Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning using these data sets must simultaneously model performance–that is, the learning function–and participation. Using a data set of 54 million gameplays from the online brain training site Lumosity , we show that learning functions of participants are systematically biased by participation policies that vary with age. Older adults who are poorer performers are more likely to drop out than older adults who perform well. Younger adults show no such effect. Using this knowledge, we can extrapolate group learning functions that correct for these age-related differences in dropout.</description><subject>Age factors</subject><subject>Analysis</subject><subject>Behavioral Science and Psychology</subject><subject>Cognitive Psychology</subject><subject>Datasets</subject><subject>Internet</subject><subject>Learning</subject><subject>Missing data</subject><subject>Older people</subject><subject>Online games</subject><subject>Psychology</subject><issn>1554-3528</issn><issn>1554-3528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UUtv1jAQjBAVLW1_ABdkiQuXtF7HThxuVVUeUiUu5Ww5zvrDnxI72I4Ed344DikPISEfvDuaGe3uVNULoFdNJ-R1goYzWVOQNUAp2JPqDITgdSOYfPpXfVo9T-lIaSMZ8GfVaUOZAErbs-r7w2ckx-B8Jib4HN2wZhc8CZYsOmZn3KJ_AtqPZMFoQ5y1N0hyIBPq6J0_ELt6s5HSG3L3dZlC3MBcjNFaNDltbvqAxHky6XjAOhk9IRl11iRhThfVidVTwsvH_7z69Pbu4fZ9ff_x3Yfbm_vacMlybfTQloV1IwfTQ89bbntgnPPS0nG0gxBDKTvd0c4wJkdpx4LrRuDQt1w059Xr3XeJ4cuKKavZJYPTpD2GNSlWrgi9BCoL9dU_1GNYoy_TKcY6xtoWYGNd7axD2Uc5b0OO2pQ34uzKPdG6gt90wKHj0EMRwC4wMaQU0aolulnHbwqo2jJVe6aqZKq2TBUrmpePo6zDjONvxa8QC4HthLRsl8f4Z9b_u_4AEZ2tPA</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Steyvers, Mark</creator><creator>Benjamin, Aaron S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>4T-</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20190815</creationdate><title>The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets</title><author>Steyvers, Mark ; Benjamin, Aaron S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-cab6342a38bc919464f912444bc90ddfb55bbc97a707c228d8fd0dda35eb96453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Age factors</topic><topic>Analysis</topic><topic>Behavioral Science and Psychology</topic><topic>Cognitive Psychology</topic><topic>Datasets</topic><topic>Internet</topic><topic>Learning</topic><topic>Missing data</topic><topic>Older people</topic><topic>Online games</topic><topic>Psychology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steyvers, Mark</creatorcontrib><creatorcontrib>Benjamin, Aaron S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>Docstoc</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Behavior Research Methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steyvers, Mark</au><au>Benjamin, Aaron S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets</atitle><jtitle>Behavior Research Methods</jtitle><stitle>Behav Res</stitle><addtitle>Behav Res Methods</addtitle><date>2019-08-15</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>1531</spage><epage>1543</epage><pages>1531-1543</pages><issn>1554-3528</issn><eissn>1554-3528</eissn><abstract>Large-scale data sets from online training and game platforms offer the opportunity for more extensive and more precise investigations of human learning than is typically achievable in the laboratory. However, because people make their own choices about participation, any investigation into learning using these data sets must simultaneously model performance–that is, the learning function–and participation. Using a data set of 54 million gameplays from the online brain training site Lumosity , we show that learning functions of participants are systematically biased by participation policies that vary with age. Older adults who are poorer performers are more likely to drop out than older adults who perform well. Younger adults show no such effect. Using this knowledge, we can extrapolate group learning functions that correct for these age-related differences in dropout.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30251006</pmid><doi>10.3758/s13428-018-1128-2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-3528
ispartof Behavior Research Methods, 2019-08, Vol.51 (4), p.1531-1543
issn 1554-3528
1554-3528
language eng
recordid cdi_proquest_miscellaneous_2112198108
source SpringerLink Journals - AutoHoldings
subjects Age factors
Analysis
Behavioral Science and Psychology
Cognitive Psychology
Datasets
Internet
Learning
Missing data
Older people
Online games
Psychology
title The joint contribution of participation and performance to learning functions: Exploring the effects of age in large-scale data sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T02%3A17%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20joint%20contribution%20of%20participation%20and%20performance%20to%20learning%20functions:%20Exploring%20the%20effects%20of%20age%20in%20large-scale%20data%20sets&rft.jtitle=Behavior%20Research%20Methods&rft.au=Steyvers,%20Mark&rft.date=2019-08-15&rft.volume=51&rft.issue=4&rft.spage=1531&rft.epage=1543&rft.pages=1531-1543&rft.issn=1554-3528&rft.eissn=1554-3528&rft_id=info:doi/10.3758/s13428-018-1128-2&rft_dat=%3Cgale_proqu%3EA714174191%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2272266118&rft_id=info:pmid/30251006&rft_galeid=A714174191&rfr_iscdi=true