Framework of Cytochrome/Vitamin B2 Linker/Graphene for Robust Microbial Electricity Generation

A bioelectrochemical system (BES) allows direct electricity production from wastes, but its low-power density, which is mainly associated with its poor anodic performance, limits its practical applications. Here, the anodic performance of a BES can be significantly improved by electrodepositing vita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-10, Vol.10 (41), p.35090-35098
Hauptverfasser: Yu, Sheng-Song, Cheng, Lei, Chen, Jie-Jie, Li, Wen-Wei, Zhao, Feng, Wang, Wen-Lan, Li, Dao-Bo, Zhang, Feng, Yu, Han-Qing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35098
container_issue 41
container_start_page 35090
container_title ACS applied materials & interfaces
container_volume 10
creator Yu, Sheng-Song
Cheng, Lei
Chen, Jie-Jie
Li, Wen-Wei
Zhao, Feng
Wang, Wen-Lan
Li, Dao-Bo
Zhang, Feng
Yu, Han-Qing
description A bioelectrochemical system (BES) allows direct electricity production from wastes, but its low-power density, which is mainly associated with its poor anodic performance, limits its practical applications. Here, the anodic performance of a BES can be significantly improved by electrodepositing vitamin B2 (VB2) onto a graphene [reduced graphene oxide (rGO)]-modified glassy carbon electrode (VB2/rGO/GC) with Geobacter sulfurreducens as the model microorganisms. The VB2/rGO/GC electrode results in 200% higher electrochemical activity than a bare GC anode. Additionally, in microbial electrolysis cells, the current density of this composite electrode peaks at ∼210 μA cm–2 after 118 h and is maintained for 113 h. An electrochemical analysis coupled with molecular simulations reveals that using VB2 as a linker between the electrochemically active protein of this model strain and the rGO surface accelerates the electron transfer, which further improves the bioelectricity generation and favors the long-term stability of the BES. The VB2 bound with a flexible ribityl group as the organic molecular bridge efficiently mediates energy conversion in microbial metabolism and artificial electronics. This work provides a straightforward and effective route to significantly enhance the bioenergy generation in a BES.
doi_str_mv 10.1021/acsami.8b10877
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2111740303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111740303</sourcerecordid><originalsourceid>FETCH-LOGICAL-a683-ed52a7d3996cbd03f946c52ab5baf8040b9a1e92116eb7ef632133b5c1c484d53</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtXzzmKsG2-9uuopa3CiiDFo0uSnaVpdzc1ySL990ZaPM0wPPPy8iB0T8mMEkbnUnvZm1mhKCny_AJNaClEUrCUXf7vQlyjG-93hGSckXSCvlZO9vBj3R7bFi-Oweqtsz3MP02IaQN-Zrgywx7cfO3kYQsD4NY6_GHV6AN-M9pZZWSHlx3o4Iw24YjXkXIyGDvcoqtWdh7uznOKNqvlZvGSVO_r18VTlcis4Ak0KZN5w8sy06ohvC1FpuNJpUq2BRFElZJCySjNQOXQxu6Uc5VqqkUhmpRP0cMp9uDs9wg-1L3xGrpODmBHX8dPmgvCCY_o4wmNuuqdHd0Qe9WU1H8O65PD-uyQ_wL6XmZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111740303</pqid></control><display><type>article</type><title>Framework of Cytochrome/Vitamin B2 Linker/Graphene for Robust Microbial Electricity Generation</title><source>American Chemical Society Web Editions</source><creator>Yu, Sheng-Song ; Cheng, Lei ; Chen, Jie-Jie ; Li, Wen-Wei ; Zhao, Feng ; Wang, Wen-Lan ; Li, Dao-Bo ; Zhang, Feng ; Yu, Han-Qing</creator><creatorcontrib>Yu, Sheng-Song ; Cheng, Lei ; Chen, Jie-Jie ; Li, Wen-Wei ; Zhao, Feng ; Wang, Wen-Lan ; Li, Dao-Bo ; Zhang, Feng ; Yu, Han-Qing</creatorcontrib><description>A bioelectrochemical system (BES) allows direct electricity production from wastes, but its low-power density, which is mainly associated with its poor anodic performance, limits its practical applications. Here, the anodic performance of a BES can be significantly improved by electrodepositing vitamin B2 (VB2) onto a graphene [reduced graphene oxide (rGO)]-modified glassy carbon electrode (VB2/rGO/GC) with Geobacter sulfurreducens as the model microorganisms. The VB2/rGO/GC electrode results in 200% higher electrochemical activity than a bare GC anode. Additionally, in microbial electrolysis cells, the current density of this composite electrode peaks at ∼210 μA cm–2 after 118 h and is maintained for 113 h. An electrochemical analysis coupled with molecular simulations reveals that using VB2 as a linker between the electrochemically active protein of this model strain and the rGO surface accelerates the electron transfer, which further improves the bioelectricity generation and favors the long-term stability of the BES. The VB2 bound with a flexible ribityl group as the organic molecular bridge efficiently mediates energy conversion in microbial metabolism and artificial electronics. This work provides a straightforward and effective route to significantly enhance the bioenergy generation in a BES.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.8b10877</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-10, Vol.10 (41), p.35090-35098</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2539-8305 ; 0000-0002-8809-6910 ; 0000-0002-1525-042X ; 0000-0002-1382-520X ; 0000-0001-9280-0045 ; 0000-0001-5247-6244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.8b10877$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.8b10877$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Yu, Sheng-Song</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Chen, Jie-Jie</creatorcontrib><creatorcontrib>Li, Wen-Wei</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><creatorcontrib>Wang, Wen-Lan</creatorcontrib><creatorcontrib>Li, Dao-Bo</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Yu, Han-Qing</creatorcontrib><title>Framework of Cytochrome/Vitamin B2 Linker/Graphene for Robust Microbial Electricity Generation</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>A bioelectrochemical system (BES) allows direct electricity production from wastes, but its low-power density, which is mainly associated with its poor anodic performance, limits its practical applications. Here, the anodic performance of a BES can be significantly improved by electrodepositing vitamin B2 (VB2) onto a graphene [reduced graphene oxide (rGO)]-modified glassy carbon electrode (VB2/rGO/GC) with Geobacter sulfurreducens as the model microorganisms. The VB2/rGO/GC electrode results in 200% higher electrochemical activity than a bare GC anode. Additionally, in microbial electrolysis cells, the current density of this composite electrode peaks at ∼210 μA cm–2 after 118 h and is maintained for 113 h. An electrochemical analysis coupled with molecular simulations reveals that using VB2 as a linker between the electrochemically active protein of this model strain and the rGO surface accelerates the electron transfer, which further improves the bioelectricity generation and favors the long-term stability of the BES. The VB2 bound with a flexible ribityl group as the organic molecular bridge efficiently mediates energy conversion in microbial metabolism and artificial electronics. This work provides a straightforward and effective route to significantly enhance the bioenergy generation in a BES.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtXzzmKsG2-9uuopa3CiiDFo0uSnaVpdzc1ySL990ZaPM0wPPPy8iB0T8mMEkbnUnvZm1mhKCny_AJNaClEUrCUXf7vQlyjG-93hGSckXSCvlZO9vBj3R7bFi-Oweqtsz3MP02IaQN-Zrgywx7cfO3kYQsD4NY6_GHV6AN-M9pZZWSHlx3o4Iw24YjXkXIyGDvcoqtWdh7uznOKNqvlZvGSVO_r18VTlcis4Ak0KZN5w8sy06ohvC1FpuNJpUq2BRFElZJCySjNQOXQxu6Uc5VqqkUhmpRP0cMp9uDs9wg-1L3xGrpODmBHX8dPmgvCCY_o4wmNuuqdHd0Qe9WU1H8O65PD-uyQ_wL6XmZU</recordid><startdate>20181017</startdate><enddate>20181017</enddate><creator>Yu, Sheng-Song</creator><creator>Cheng, Lei</creator><creator>Chen, Jie-Jie</creator><creator>Li, Wen-Wei</creator><creator>Zhao, Feng</creator><creator>Wang, Wen-Lan</creator><creator>Li, Dao-Bo</creator><creator>Zhang, Feng</creator><creator>Yu, Han-Qing</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2539-8305</orcidid><orcidid>https://orcid.org/0000-0002-8809-6910</orcidid><orcidid>https://orcid.org/0000-0002-1525-042X</orcidid><orcidid>https://orcid.org/0000-0002-1382-520X</orcidid><orcidid>https://orcid.org/0000-0001-9280-0045</orcidid><orcidid>https://orcid.org/0000-0001-5247-6244</orcidid></search><sort><creationdate>20181017</creationdate><title>Framework of Cytochrome/Vitamin B2 Linker/Graphene for Robust Microbial Electricity Generation</title><author>Yu, Sheng-Song ; Cheng, Lei ; Chen, Jie-Jie ; Li, Wen-Wei ; Zhao, Feng ; Wang, Wen-Lan ; Li, Dao-Bo ; Zhang, Feng ; Yu, Han-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a683-ed52a7d3996cbd03f946c52ab5baf8040b9a1e92116eb7ef632133b5c1c484d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Sheng-Song</creatorcontrib><creatorcontrib>Cheng, Lei</creatorcontrib><creatorcontrib>Chen, Jie-Jie</creatorcontrib><creatorcontrib>Li, Wen-Wei</creatorcontrib><creatorcontrib>Zhao, Feng</creatorcontrib><creatorcontrib>Wang, Wen-Lan</creatorcontrib><creatorcontrib>Li, Dao-Bo</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Yu, Han-Qing</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Sheng-Song</au><au>Cheng, Lei</au><au>Chen, Jie-Jie</au><au>Li, Wen-Wei</au><au>Zhao, Feng</au><au>Wang, Wen-Lan</au><au>Li, Dao-Bo</au><au>Zhang, Feng</au><au>Yu, Han-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Framework of Cytochrome/Vitamin B2 Linker/Graphene for Robust Microbial Electricity Generation</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-10-17</date><risdate>2018</risdate><volume>10</volume><issue>41</issue><spage>35090</spage><epage>35098</epage><pages>35090-35098</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>A bioelectrochemical system (BES) allows direct electricity production from wastes, but its low-power density, which is mainly associated with its poor anodic performance, limits its practical applications. Here, the anodic performance of a BES can be significantly improved by electrodepositing vitamin B2 (VB2) onto a graphene [reduced graphene oxide (rGO)]-modified glassy carbon electrode (VB2/rGO/GC) with Geobacter sulfurreducens as the model microorganisms. The VB2/rGO/GC electrode results in 200% higher electrochemical activity than a bare GC anode. Additionally, in microbial electrolysis cells, the current density of this composite electrode peaks at ∼210 μA cm–2 after 118 h and is maintained for 113 h. An electrochemical analysis coupled with molecular simulations reveals that using VB2 as a linker between the electrochemically active protein of this model strain and the rGO surface accelerates the electron transfer, which further improves the bioelectricity generation and favors the long-term stability of the BES. The VB2 bound with a flexible ribityl group as the organic molecular bridge efficiently mediates energy conversion in microbial metabolism and artificial electronics. This work provides a straightforward and effective route to significantly enhance the bioenergy generation in a BES.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.8b10877</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2539-8305</orcidid><orcidid>https://orcid.org/0000-0002-8809-6910</orcidid><orcidid>https://orcid.org/0000-0002-1525-042X</orcidid><orcidid>https://orcid.org/0000-0002-1382-520X</orcidid><orcidid>https://orcid.org/0000-0001-9280-0045</orcidid><orcidid>https://orcid.org/0000-0001-5247-6244</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-10, Vol.10 (41), p.35090-35098
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2111740303
source American Chemical Society Web Editions
title Framework of Cytochrome/Vitamin B2 Linker/Graphene for Robust Microbial Electricity Generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A28%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Framework%20of%20Cytochrome/Vitamin%20B2%20Linker/Graphene%20for%20Robust%20Microbial%20Electricity%20Generation&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Yu,%20Sheng-Song&rft.date=2018-10-17&rft.volume=10&rft.issue=41&rft.spage=35090&rft.epage=35098&rft.pages=35090-35098&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.8b10877&rft_dat=%3Cproquest_acs_j%3E2111740303%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111740303&rft_id=info:pmid/&rfr_iscdi=true