Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha

Abstract Background Peritoneal membrane (PM) damage during peritoneal dialysis (PD) is mediated largely by high glucose (HG)–induced pro-inflammatory and neo-angiogenic processes, resulting in PM fibrosis and ultrafiltration failure. We recently demonstrated a crucial role for protein kinase C (PKC)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nephrology, dialysis, transplantation dialysis, transplantation, 2019-06, Vol.34 (6), p.947-960
Hauptverfasser: Balzer, Michael S, Helmke, Alexandra, Ackermann, Martina, Casper, Janis, Dong, Lei, Hiss, Marcus, Kiyan, Yulia, Rong, Song, Timrott, Kai, von Vietinghoff, Sibylle, Wang, Le, Haller, Hermann, Shushakova, Nelli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 960
container_issue 6
container_start_page 947
container_title Nephrology, dialysis, transplantation
container_volume 34
creator Balzer, Michael S
Helmke, Alexandra
Ackermann, Martina
Casper, Janis
Dong, Lei
Hiss, Marcus
Kiyan, Yulia
Rong, Song
Timrott, Kai
von Vietinghoff, Sibylle
Wang, Le
Haller, Hermann
Shushakova, Nelli
description Abstract Background Peritoneal membrane (PM) damage during peritoneal dialysis (PD) is mediated largely by high glucose (HG)–induced pro-inflammatory and neo-angiogenic processes, resulting in PM fibrosis and ultrafiltration failure. We recently demonstrated a crucial role for protein kinase C (PKC) isoform α in mesothelial cells. Methods In this study we investigate the role of PKCβ in PM damage in vitro using primary mouse peritoneal macrophages (MPMΦ), human macrophages (HMΦ) and immortalized mouse peritoneal mesothelial cells (MPMCs), as well as in vivo using a chronic PD mouse model. Results We demonstrate that PKCβ is the predominant classical PKC isoform expressed in primary MPMΦ and its expression is up-regulated in vitro under HG conditions. After in vitro lipopolysaccharides stimulation PKCβ−/− MPMΦ demonstrates increased levels of interleukin 6 (IL-6), tumour necrosis factor α, and monocyte chemoattractant protein-1 and drastically decrease IL-10 release compared with wild-type (WT) cells. In vivo, catheter-delivered treatment with HG PD fluid for 5 weeks induces PKCβ up-regulation in omentum of WT mice and results in inflammatory response and PM damage characterized by fibrosis and neo-angiogenesis. In comparison to WT mice, all pathological changes are strongly aggravated in PKCβ−/− animals. Underlying molecular mechanisms involve a pro-inflammatory M1 polarization shift of MPMΦ and up-regulation of PKCα in MPMCs of PKCβ−/− mice. Finally, we demonstrate PKCβ involvement in HG-induced polarization processes in HMΦ. Conclusions PKCβ as the dominant PKC isoform in MPMΦ is up-regulated by HG PD fluid and exerts anti-inflammatory effects during PD through regulation of MPMΦ M1/M2 polarization and control of the dominant mesothelial PKC isoform α.
doi_str_mv 10.1093/ndt/gfy282
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2111738548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ndt/gfy282</oup_id><sourcerecordid>2111738548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-c613c1feab22c9c6d59c1e1be4e08ff76d4c7508ca969e0cba17fbc67d420b473</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy0Eard_LjxA5QsSQgq1nWycHKtVoUhFcKDnaGKPtwbHTm0HaXkeHhRXKT1w4DTSzKdPM_Mj5DVn7znr60uv8-XeHEQnXpANb1pWibrbviSbMuQV27L-mJyk9J0x1gspj8hxzUQj27bekN9fY8hoPf1hPSSkOzpiBqrRWGXRqwO1XkUso0T3blEhYTWhtpBR0xmjzcEjOKphgj3SnxboZ04nUDHM94-dOTiI9hdkGzwFr-kyVxH3i1s7wdAJU8j36GzRzP9uA65ozsgrAy7h-VM9JXcfrr_tbqrbLx8_7a5uK1VzmSvV8lpxgzAKoXrV6m2vOPIRG2SdMbLVjZJb1ino2x6ZGoFLM6pW6kawsZH1KXm7essaDwumPEw2KXQOPIYlDYJzLstrm66g71a0HJpSRDPM0U4QDwNnw2MqQ0llWFMp8MWTdxnL857RvzEU4M0KhGX-n-gP2BGaJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111738548</pqid></control><display><type>article</type><title>Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Balzer, Michael S ; Helmke, Alexandra ; Ackermann, Martina ; Casper, Janis ; Dong, Lei ; Hiss, Marcus ; Kiyan, Yulia ; Rong, Song ; Timrott, Kai ; von Vietinghoff, Sibylle ; Wang, Le ; Haller, Hermann ; Shushakova, Nelli</creator><creatorcontrib>Balzer, Michael S ; Helmke, Alexandra ; Ackermann, Martina ; Casper, Janis ; Dong, Lei ; Hiss, Marcus ; Kiyan, Yulia ; Rong, Song ; Timrott, Kai ; von Vietinghoff, Sibylle ; Wang, Le ; Haller, Hermann ; Shushakova, Nelli</creatorcontrib><description>Abstract Background Peritoneal membrane (PM) damage during peritoneal dialysis (PD) is mediated largely by high glucose (HG)–induced pro-inflammatory and neo-angiogenic processes, resulting in PM fibrosis and ultrafiltration failure. We recently demonstrated a crucial role for protein kinase C (PKC) isoform α in mesothelial cells. Methods In this study we investigate the role of PKCβ in PM damage in vitro using primary mouse peritoneal macrophages (MPMΦ), human macrophages (HMΦ) and immortalized mouse peritoneal mesothelial cells (MPMCs), as well as in vivo using a chronic PD mouse model. Results We demonstrate that PKCβ is the predominant classical PKC isoform expressed in primary MPMΦ and its expression is up-regulated in vitro under HG conditions. After in vitro lipopolysaccharides stimulation PKCβ−/− MPMΦ demonstrates increased levels of interleukin 6 (IL-6), tumour necrosis factor α, and monocyte chemoattractant protein-1 and drastically decrease IL-10 release compared with wild-type (WT) cells. In vivo, catheter-delivered treatment with HG PD fluid for 5 weeks induces PKCβ up-regulation in omentum of WT mice and results in inflammatory response and PM damage characterized by fibrosis and neo-angiogenesis. In comparison to WT mice, all pathological changes are strongly aggravated in PKCβ−/− animals. Underlying molecular mechanisms involve a pro-inflammatory M1 polarization shift of MPMΦ and up-regulation of PKCα in MPMCs of PKCβ−/− mice. Finally, we demonstrate PKCβ involvement in HG-induced polarization processes in HMΦ. Conclusions PKCβ as the dominant PKC isoform in MPMΦ is up-regulated by HG PD fluid and exerts anti-inflammatory effects during PD through regulation of MPMΦ M1/M2 polarization and control of the dominant mesothelial PKC isoform α.</description><identifier>ISSN: 0931-0509</identifier><identifier>EISSN: 1460-2385</identifier><identifier>DOI: 10.1093/ndt/gfy282</identifier><identifier>PMID: 30247663</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Chemokine CCL2 - metabolism ; Dialysis Solutions - metabolism ; Disease Models, Animal ; Epithelial Cells ; Epithelium ; Female ; Glucose - metabolism ; Humans ; Inflammation ; Lipopolysaccharides - pharmacology ; Macrophages - metabolism ; Mice ; Mice, Transgenic ; Neovascularization, Pathologic ; Omentum - metabolism ; Peritoneal Dialysis - adverse effects ; Peritoneal Fibrosis - metabolism ; Peritoneum - metabolism ; Protein Isoforms ; Protein Kinase C beta - deficiency ; Protein Kinase C-alpha - metabolism ; Tumor Necrosis Factor-alpha - metabolism ; Up-Regulation</subject><ispartof>Nephrology, dialysis, transplantation, 2019-06, Vol.34 (6), p.947-960</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved. 2018</rights><rights>The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-c613c1feab22c9c6d59c1e1be4e08ff76d4c7508ca969e0cba17fbc67d420b473</citedby><cites>FETCH-LOGICAL-c317t-c613c1feab22c9c6d59c1e1be4e08ff76d4c7508ca969e0cba17fbc67d420b473</cites><orcidid>0000-0003-0508-1260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30247663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balzer, Michael S</creatorcontrib><creatorcontrib>Helmke, Alexandra</creatorcontrib><creatorcontrib>Ackermann, Martina</creatorcontrib><creatorcontrib>Casper, Janis</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Hiss, Marcus</creatorcontrib><creatorcontrib>Kiyan, Yulia</creatorcontrib><creatorcontrib>Rong, Song</creatorcontrib><creatorcontrib>Timrott, Kai</creatorcontrib><creatorcontrib>von Vietinghoff, Sibylle</creatorcontrib><creatorcontrib>Wang, Le</creatorcontrib><creatorcontrib>Haller, Hermann</creatorcontrib><creatorcontrib>Shushakova, Nelli</creatorcontrib><title>Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha</title><title>Nephrology, dialysis, transplantation</title><addtitle>Nephrol Dial Transplant</addtitle><description>Abstract Background Peritoneal membrane (PM) damage during peritoneal dialysis (PD) is mediated largely by high glucose (HG)–induced pro-inflammatory and neo-angiogenic processes, resulting in PM fibrosis and ultrafiltration failure. We recently demonstrated a crucial role for protein kinase C (PKC) isoform α in mesothelial cells. Methods In this study we investigate the role of PKCβ in PM damage in vitro using primary mouse peritoneal macrophages (MPMΦ), human macrophages (HMΦ) and immortalized mouse peritoneal mesothelial cells (MPMCs), as well as in vivo using a chronic PD mouse model. Results We demonstrate that PKCβ is the predominant classical PKC isoform expressed in primary MPMΦ and its expression is up-regulated in vitro under HG conditions. After in vitro lipopolysaccharides stimulation PKCβ−/− MPMΦ demonstrates increased levels of interleukin 6 (IL-6), tumour necrosis factor α, and monocyte chemoattractant protein-1 and drastically decrease IL-10 release compared with wild-type (WT) cells. In vivo, catheter-delivered treatment with HG PD fluid for 5 weeks induces PKCβ up-regulation in omentum of WT mice and results in inflammatory response and PM damage characterized by fibrosis and neo-angiogenesis. In comparison to WT mice, all pathological changes are strongly aggravated in PKCβ−/− animals. Underlying molecular mechanisms involve a pro-inflammatory M1 polarization shift of MPMΦ and up-regulation of PKCα in MPMCs of PKCβ−/− mice. Finally, we demonstrate PKCβ involvement in HG-induced polarization processes in HMΦ. Conclusions PKCβ as the dominant PKC isoform in MPMΦ is up-regulated by HG PD fluid and exerts anti-inflammatory effects during PD through regulation of MPMΦ M1/M2 polarization and control of the dominant mesothelial PKC isoform α.</description><subject>Animals</subject><subject>Chemokine CCL2 - metabolism</subject><subject>Dialysis Solutions - metabolism</subject><subject>Disease Models, Animal</subject><subject>Epithelial Cells</subject><subject>Epithelium</subject><subject>Female</subject><subject>Glucose - metabolism</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Macrophages - metabolism</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neovascularization, Pathologic</subject><subject>Omentum - metabolism</subject><subject>Peritoneal Dialysis - adverse effects</subject><subject>Peritoneal Fibrosis - metabolism</subject><subject>Peritoneum - metabolism</subject><subject>Protein Isoforms</subject><subject>Protein Kinase C beta - deficiency</subject><subject>Protein Kinase C-alpha - metabolism</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Up-Regulation</subject><issn>0931-0509</issn><issn>1460-2385</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9u1DAQhy0Eard_LjxA5QsSQgq1nWycHKtVoUhFcKDnaGKPtwbHTm0HaXkeHhRXKT1w4DTSzKdPM_Mj5DVn7znr60uv8-XeHEQnXpANb1pWibrbviSbMuQV27L-mJyk9J0x1gspj8hxzUQj27bekN9fY8hoPf1hPSSkOzpiBqrRWGXRqwO1XkUso0T3blEhYTWhtpBR0xmjzcEjOKphgj3SnxboZ04nUDHM94-dOTiI9hdkGzwFr-kyVxH3i1s7wdAJU8j36GzRzP9uA65ozsgrAy7h-VM9JXcfrr_tbqrbLx8_7a5uK1VzmSvV8lpxgzAKoXrV6m2vOPIRG2SdMbLVjZJb1ino2x6ZGoFLM6pW6kawsZH1KXm7essaDwumPEw2KXQOPIYlDYJzLstrm66g71a0HJpSRDPM0U4QDwNnw2MqQ0llWFMp8MWTdxnL857RvzEU4M0KhGX-n-gP2BGaJA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Balzer, Michael S</creator><creator>Helmke, Alexandra</creator><creator>Ackermann, Martina</creator><creator>Casper, Janis</creator><creator>Dong, Lei</creator><creator>Hiss, Marcus</creator><creator>Kiyan, Yulia</creator><creator>Rong, Song</creator><creator>Timrott, Kai</creator><creator>von Vietinghoff, Sibylle</creator><creator>Wang, Le</creator><creator>Haller, Hermann</creator><creator>Shushakova, Nelli</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0508-1260</orcidid></search><sort><creationdate>20190601</creationdate><title>Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha</title><author>Balzer, Michael S ; Helmke, Alexandra ; Ackermann, Martina ; Casper, Janis ; Dong, Lei ; Hiss, Marcus ; Kiyan, Yulia ; Rong, Song ; Timrott, Kai ; von Vietinghoff, Sibylle ; Wang, Le ; Haller, Hermann ; Shushakova, Nelli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-c613c1feab22c9c6d59c1e1be4e08ff76d4c7508ca969e0cba17fbc67d420b473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Chemokine CCL2 - metabolism</topic><topic>Dialysis Solutions - metabolism</topic><topic>Disease Models, Animal</topic><topic>Epithelial Cells</topic><topic>Epithelium</topic><topic>Female</topic><topic>Glucose - metabolism</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Macrophages - metabolism</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neovascularization, Pathologic</topic><topic>Omentum - metabolism</topic><topic>Peritoneal Dialysis - adverse effects</topic><topic>Peritoneal Fibrosis - metabolism</topic><topic>Peritoneum - metabolism</topic><topic>Protein Isoforms</topic><topic>Protein Kinase C beta - deficiency</topic><topic>Protein Kinase C-alpha - metabolism</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balzer, Michael S</creatorcontrib><creatorcontrib>Helmke, Alexandra</creatorcontrib><creatorcontrib>Ackermann, Martina</creatorcontrib><creatorcontrib>Casper, Janis</creatorcontrib><creatorcontrib>Dong, Lei</creatorcontrib><creatorcontrib>Hiss, Marcus</creatorcontrib><creatorcontrib>Kiyan, Yulia</creatorcontrib><creatorcontrib>Rong, Song</creatorcontrib><creatorcontrib>Timrott, Kai</creatorcontrib><creatorcontrib>von Vietinghoff, Sibylle</creatorcontrib><creatorcontrib>Wang, Le</creatorcontrib><creatorcontrib>Haller, Hermann</creatorcontrib><creatorcontrib>Shushakova, Nelli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nephrology, dialysis, transplantation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balzer, Michael S</au><au>Helmke, Alexandra</au><au>Ackermann, Martina</au><au>Casper, Janis</au><au>Dong, Lei</au><au>Hiss, Marcus</au><au>Kiyan, Yulia</au><au>Rong, Song</au><au>Timrott, Kai</au><au>von Vietinghoff, Sibylle</au><au>Wang, Le</au><au>Haller, Hermann</au><au>Shushakova, Nelli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha</atitle><jtitle>Nephrology, dialysis, transplantation</jtitle><addtitle>Nephrol Dial Transplant</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>34</volume><issue>6</issue><spage>947</spage><epage>960</epage><pages>947-960</pages><issn>0931-0509</issn><eissn>1460-2385</eissn><abstract>Abstract Background Peritoneal membrane (PM) damage during peritoneal dialysis (PD) is mediated largely by high glucose (HG)–induced pro-inflammatory and neo-angiogenic processes, resulting in PM fibrosis and ultrafiltration failure. We recently demonstrated a crucial role for protein kinase C (PKC) isoform α in mesothelial cells. Methods In this study we investigate the role of PKCβ in PM damage in vitro using primary mouse peritoneal macrophages (MPMΦ), human macrophages (HMΦ) and immortalized mouse peritoneal mesothelial cells (MPMCs), as well as in vivo using a chronic PD mouse model. Results We demonstrate that PKCβ is the predominant classical PKC isoform expressed in primary MPMΦ and its expression is up-regulated in vitro under HG conditions. After in vitro lipopolysaccharides stimulation PKCβ−/− MPMΦ demonstrates increased levels of interleukin 6 (IL-6), tumour necrosis factor α, and monocyte chemoattractant protein-1 and drastically decrease IL-10 release compared with wild-type (WT) cells. In vivo, catheter-delivered treatment with HG PD fluid for 5 weeks induces PKCβ up-regulation in omentum of WT mice and results in inflammatory response and PM damage characterized by fibrosis and neo-angiogenesis. In comparison to WT mice, all pathological changes are strongly aggravated in PKCβ−/− animals. Underlying molecular mechanisms involve a pro-inflammatory M1 polarization shift of MPMΦ and up-regulation of PKCα in MPMCs of PKCβ−/− mice. Finally, we demonstrate PKCβ involvement in HG-induced polarization processes in HMΦ. Conclusions PKCβ as the dominant PKC isoform in MPMΦ is up-regulated by HG PD fluid and exerts anti-inflammatory effects during PD through regulation of MPMΦ M1/M2 polarization and control of the dominant mesothelial PKC isoform α.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>30247663</pmid><doi>10.1093/ndt/gfy282</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0508-1260</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0931-0509
ispartof Nephrology, dialysis, transplantation, 2019-06, Vol.34 (6), p.947-960
issn 0931-0509
1460-2385
language eng
recordid cdi_proquest_miscellaneous_2111738548
source Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Chemokine CCL2 - metabolism
Dialysis Solutions - metabolism
Disease Models, Animal
Epithelial Cells
Epithelium
Female
Glucose - metabolism
Humans
Inflammation
Lipopolysaccharides - pharmacology
Macrophages - metabolism
Mice
Mice, Transgenic
Neovascularization, Pathologic
Omentum - metabolism
Peritoneal Dialysis - adverse effects
Peritoneal Fibrosis - metabolism
Peritoneum - metabolism
Protein Isoforms
Protein Kinase C beta - deficiency
Protein Kinase C-alpha - metabolism
Tumor Necrosis Factor-alpha - metabolism
Up-Regulation
title Protein kinase C beta deficiency increases glucose-mediated peritoneal damage via M1 macrophage polarization and up-regulation of mesothelial protein kinase C alpha
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20kinase%20C%20beta%20deficiency%20increases%20glucose-mediated%20peritoneal%20damage%20via%20M1%20macrophage%20polarization%20and%20up-regulation%20of%20mesothelial%20protein%20kinase%20C%20alpha&rft.jtitle=Nephrology,%20dialysis,%20transplantation&rft.au=Balzer,%20Michael%20S&rft.date=2019-06-01&rft.volume=34&rft.issue=6&rft.spage=947&rft.epage=960&rft.pages=947-960&rft.issn=0931-0509&rft.eissn=1460-2385&rft_id=info:doi/10.1093/ndt/gfy282&rft_dat=%3Cproquest_cross%3E2111738548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111738548&rft_id=info:pmid/30247663&rft_oup_id=10.1093/ndt/gfy282&rfr_iscdi=true