Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna
Abstract Reaumuria trigyna is an endangered recretohalophyte and a small archaic feral shrub that is endemic to arid and semi-arid plateau regions of Inner Mongolia, China. Based on transcriptomic data, we isolated a high-affinity potassium transporter gene (RtHKT1) from R. trigyna, which encoded a...
Gespeichert in:
Veröffentlicht in: | Plant and cell physiology 2019-01, Vol.60 (1), p.85-106 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106 |
---|---|
container_issue | 1 |
container_start_page | 85 |
container_title | Plant and cell physiology |
container_volume | 60 |
creator | Li, Ningning Du, Chao Ma, Binjie Gao, Ziqi Wu, Zhigang Zheng, Linlin Niu, Yiding Wang, Yingchun |
description | Abstract
Reaumuria trigyna is an endangered recretohalophyte and a small archaic feral shrub that is endemic to arid and semi-arid plateau regions of Inner Mongolia, China. Based on transcriptomic data, we isolated a high-affinity potassium transporter gene (RtHKT1) from R. trigyna, which encoded a plasma membrane-localized protein. RtHKT1 was rapidly up-regulated by high Na+ or low K+ and exhibited different tissue-specific expression patterns before and after stress treatment. Transgenic yeast showed tolerance to high Na+ or low K+, while transgenic Arabidopsis exhibited tolerance to high Na+ and sensitivity to high K+, or high Na+–low K+, confirming that Na+ tolerance in transgenic Arabidopsis depends on a sufficient external K+ concentration. Under external high Na+, high K+ and low K+ conditions, transgenic yeast accumulated more Na+–K+, Na+ and K+, while transgenic Arabidopsis accumulated less Na+–more K+, more Na+ and more Na+–K+, respectively, indicating that the ion transport properties of RtHKT1 depend on the external Na+–K+ environment. Salt stress induced up-regulation of some ion transporter genes (AtSOS1/AtHAK5/AtKUP5-6), as well as down-regulation of some genes (AtNHX1/AtAVP1/AtKUP9-12), revealing that multi-ion–transporter synergism maintains Na+/K+ homeostasis under salt stress in transgenic Arabidopsis. Overexpression of RtHKT1 enhanced K+ accumulation and prevented Na+ transport from roots to shoots, improved biomass accumulation and Chl content in salt-stressed transgenic Arabidopsis. The proline content and relative water content increased significantly, and some proline biosynthesis genes (AtP5CS1 and AtP5CS2) were also up-regulated in salt-stressed transgenic plants. These results suggest that RtHKT1 confers salt tolerance on transgenic Arabidopsis by maintaining Na+/K+ homeostasis and osmotic homeostasis. |
doi_str_mv | 10.1093/pcp/pcy187 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2111152302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/pcp/pcy187</oup_id><sourcerecordid>2111152302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-1efd78c830d2e0651e691f1680ba32ef3f93a18c360485147c3800f3ce462cd53</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlYv_gDJRRBhdbLpfh2lWFusKLWelzQ7sSu7mzXJHvbsHze11aMDmQnhmRfyEHLO4IZBxm9b2frTszQ5IEM2TliQQcQPyRCAhwEkKRuQE2s_APydwzEZcAh5lkE8JF_TrpGu1I2o6J1vvS0t1YrOdUNXRjS21cbRF6NbNK5ES0VT0FdRObrSFXpAIn1CuRFNaeufzaWbPa4YVUbX1G2QLlEadHojKt1uerd9EF3dmVJQZ8r3vhGn5EiJyuLZfo7I2_R-NZkFi-eH-eRuEUjOEhcwVEWSSv-DIkSII4ZxxhSLU1gLHqLiKuOCpZLHME4j70HyFEBxieM4lEXER-Rql9sa_dmhdXldWolVJRrUnc1D5isKt3JG5HqHSqOtNajy1pS1MH3OIN9Kz730fCfdwxf73G5dY_GH_lr2wOUO0F37X9A3lgWMBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111152302</pqid></control><display><type>article</type><title>Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Li, Ningning ; Du, Chao ; Ma, Binjie ; Gao, Ziqi ; Wu, Zhigang ; Zheng, Linlin ; Niu, Yiding ; Wang, Yingchun</creator><creatorcontrib>Li, Ningning ; Du, Chao ; Ma, Binjie ; Gao, Ziqi ; Wu, Zhigang ; Zheng, Linlin ; Niu, Yiding ; Wang, Yingchun</creatorcontrib><description>Abstract
Reaumuria trigyna is an endangered recretohalophyte and a small archaic feral shrub that is endemic to arid and semi-arid plateau regions of Inner Mongolia, China. Based on transcriptomic data, we isolated a high-affinity potassium transporter gene (RtHKT1) from R. trigyna, which encoded a plasma membrane-localized protein. RtHKT1 was rapidly up-regulated by high Na+ or low K+ and exhibited different tissue-specific expression patterns before and after stress treatment. Transgenic yeast showed tolerance to high Na+ or low K+, while transgenic Arabidopsis exhibited tolerance to high Na+ and sensitivity to high K+, or high Na+–low K+, confirming that Na+ tolerance in transgenic Arabidopsis depends on a sufficient external K+ concentration. Under external high Na+, high K+ and low K+ conditions, transgenic yeast accumulated more Na+–K+, Na+ and K+, while transgenic Arabidopsis accumulated less Na+–more K+, more Na+ and more Na+–K+, respectively, indicating that the ion transport properties of RtHKT1 depend on the external Na+–K+ environment. Salt stress induced up-regulation of some ion transporter genes (AtSOS1/AtHAK5/AtKUP5-6), as well as down-regulation of some genes (AtNHX1/AtAVP1/AtKUP9-12), revealing that multi-ion–transporter synergism maintains Na+/K+ homeostasis under salt stress in transgenic Arabidopsis. Overexpression of RtHKT1 enhanced K+ accumulation and prevented Na+ transport from roots to shoots, improved biomass accumulation and Chl content in salt-stressed transgenic Arabidopsis. The proline content and relative water content increased significantly, and some proline biosynthesis genes (AtP5CS1 and AtP5CS2) were also up-regulated in salt-stressed transgenic plants. These results suggest that RtHKT1 confers salt tolerance on transgenic Arabidopsis by maintaining Na+/K+ homeostasis and osmotic homeostasis.</description><identifier>ISSN: 0032-0781</identifier><identifier>EISSN: 1471-9053</identifier><identifier>DOI: 10.1093/pcp/pcy187</identifier><identifier>PMID: 30239906</identifier><language>eng</language><publisher>Japan: Oxford University Press</publisher><subject>Amino Acid Sequence ; Antioxidants - metabolism ; Arabidopsis - genetics ; Gene Expression Regulation, Plant - drug effects ; Green Fluorescent Proteins - metabolism ; Ion Transport - drug effects ; Ion Transport - genetics ; Models, Biological ; Phylogeny ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Roots - drug effects ; Plant Roots - metabolism ; Plant Shoots - drug effects ; Plant Shoots - metabolism ; Plants, Genetically Modified ; Potassium - pharmacology ; Saccharomyces cerevisiae - metabolism ; Salt Tolerance - drug effects ; Salt Tolerance - genetics ; Salt Tolerance - physiology ; Seedlings - drug effects ; Seedlings - genetics ; Seedlings - growth & development ; Sodium - pharmacology ; Sodium Chloride - pharmacology ; Stress, Physiological - drug effects ; Stress, Physiological - genetics ; Tamaricaceae - drug effects ; Tamaricaceae - genetics ; Tamaricaceae - physiology</subject><ispartof>Plant and cell physiology, 2019-01, Vol.60 (1), p.85-106</ispartof><rights>The Author(s) 2018. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-1efd78c830d2e0651e691f1680ba32ef3f93a18c360485147c3800f3ce462cd53</citedby><cites>FETCH-LOGICAL-c317t-1efd78c830d2e0651e691f1680ba32ef3f93a18c360485147c3800f3ce462cd53</cites><orcidid>0000-0002-2903-4832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30239906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ningning</creatorcontrib><creatorcontrib>Du, Chao</creatorcontrib><creatorcontrib>Ma, Binjie</creatorcontrib><creatorcontrib>Gao, Ziqi</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Zheng, Linlin</creatorcontrib><creatorcontrib>Niu, Yiding</creatorcontrib><creatorcontrib>Wang, Yingchun</creatorcontrib><title>Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna</title><title>Plant and cell physiology</title><addtitle>Plant Cell Physiol</addtitle><description>Abstract
Reaumuria trigyna is an endangered recretohalophyte and a small archaic feral shrub that is endemic to arid and semi-arid plateau regions of Inner Mongolia, China. Based on transcriptomic data, we isolated a high-affinity potassium transporter gene (RtHKT1) from R. trigyna, which encoded a plasma membrane-localized protein. RtHKT1 was rapidly up-regulated by high Na+ or low K+ and exhibited different tissue-specific expression patterns before and after stress treatment. Transgenic yeast showed tolerance to high Na+ or low K+, while transgenic Arabidopsis exhibited tolerance to high Na+ and sensitivity to high K+, or high Na+–low K+, confirming that Na+ tolerance in transgenic Arabidopsis depends on a sufficient external K+ concentration. Under external high Na+, high K+ and low K+ conditions, transgenic yeast accumulated more Na+–K+, Na+ and K+, while transgenic Arabidopsis accumulated less Na+–more K+, more Na+ and more Na+–K+, respectively, indicating that the ion transport properties of RtHKT1 depend on the external Na+–K+ environment. Salt stress induced up-regulation of some ion transporter genes (AtSOS1/AtHAK5/AtKUP5-6), as well as down-regulation of some genes (AtNHX1/AtAVP1/AtKUP9-12), revealing that multi-ion–transporter synergism maintains Na+/K+ homeostasis under salt stress in transgenic Arabidopsis. Overexpression of RtHKT1 enhanced K+ accumulation and prevented Na+ transport from roots to shoots, improved biomass accumulation and Chl content in salt-stressed transgenic Arabidopsis. The proline content and relative water content increased significantly, and some proline biosynthesis genes (AtP5CS1 and AtP5CS2) were also up-regulated in salt-stressed transgenic plants. These results suggest that RtHKT1 confers salt tolerance on transgenic Arabidopsis by maintaining Na+/K+ homeostasis and osmotic homeostasis.</description><subject>Amino Acid Sequence</subject><subject>Antioxidants - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Gene Expression Regulation, Plant - drug effects</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Ion Transport - drug effects</subject><subject>Ion Transport - genetics</subject><subject>Models, Biological</subject><subject>Phylogeny</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - metabolism</subject><subject>Plant Shoots - drug effects</subject><subject>Plant Shoots - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Potassium - pharmacology</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Salt Tolerance - drug effects</subject><subject>Salt Tolerance - genetics</subject><subject>Salt Tolerance - physiology</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - genetics</subject><subject>Seedlings - growth & development</subject><subject>Sodium - pharmacology</subject><subject>Sodium Chloride - pharmacology</subject><subject>Stress, Physiological - drug effects</subject><subject>Stress, Physiological - genetics</subject><subject>Tamaricaceae - drug effects</subject><subject>Tamaricaceae - genetics</subject><subject>Tamaricaceae - physiology</subject><issn>0032-0781</issn><issn>1471-9053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlYv_gDJRRBhdbLpfh2lWFusKLWelzQ7sSu7mzXJHvbsHze11aMDmQnhmRfyEHLO4IZBxm9b2frTszQ5IEM2TliQQcQPyRCAhwEkKRuQE2s_APydwzEZcAh5lkE8JF_TrpGu1I2o6J1vvS0t1YrOdUNXRjS21cbRF6NbNK5ES0VT0FdRObrSFXpAIn1CuRFNaeufzaWbPa4YVUbX1G2QLlEadHojKt1uerd9EF3dmVJQZ8r3vhGn5EiJyuLZfo7I2_R-NZkFi-eH-eRuEUjOEhcwVEWSSv-DIkSII4ZxxhSLU1gLHqLiKuOCpZLHME4j70HyFEBxieM4lEXER-Rql9sa_dmhdXldWolVJRrUnc1D5isKt3JG5HqHSqOtNajy1pS1MH3OIN9Kz730fCfdwxf73G5dY_GH_lr2wOUO0F37X9A3lgWMBw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Li, Ningning</creator><creator>Du, Chao</creator><creator>Ma, Binjie</creator><creator>Gao, Ziqi</creator><creator>Wu, Zhigang</creator><creator>Zheng, Linlin</creator><creator>Niu, Yiding</creator><creator>Wang, Yingchun</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2903-4832</orcidid></search><sort><creationdate>20190101</creationdate><title>Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna</title><author>Li, Ningning ; Du, Chao ; Ma, Binjie ; Gao, Ziqi ; Wu, Zhigang ; Zheng, Linlin ; Niu, Yiding ; Wang, Yingchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-1efd78c830d2e0651e691f1680ba32ef3f93a18c360485147c3800f3ce462cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acid Sequence</topic><topic>Antioxidants - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Gene Expression Regulation, Plant - drug effects</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Ion Transport - drug effects</topic><topic>Ion Transport - genetics</topic><topic>Models, Biological</topic><topic>Phylogeny</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - metabolism</topic><topic>Plant Shoots - drug effects</topic><topic>Plant Shoots - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Potassium - pharmacology</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Salt Tolerance - drug effects</topic><topic>Salt Tolerance - genetics</topic><topic>Salt Tolerance - physiology</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - genetics</topic><topic>Seedlings - growth & development</topic><topic>Sodium - pharmacology</topic><topic>Sodium Chloride - pharmacology</topic><topic>Stress, Physiological - drug effects</topic><topic>Stress, Physiological - genetics</topic><topic>Tamaricaceae - drug effects</topic><topic>Tamaricaceae - genetics</topic><topic>Tamaricaceae - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ningning</creatorcontrib><creatorcontrib>Du, Chao</creatorcontrib><creatorcontrib>Ma, Binjie</creatorcontrib><creatorcontrib>Gao, Ziqi</creatorcontrib><creatorcontrib>Wu, Zhigang</creatorcontrib><creatorcontrib>Zheng, Linlin</creatorcontrib><creatorcontrib>Niu, Yiding</creatorcontrib><creatorcontrib>Wang, Yingchun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant and cell physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ningning</au><au>Du, Chao</au><au>Ma, Binjie</au><au>Gao, Ziqi</au><au>Wu, Zhigang</au><au>Zheng, Linlin</au><au>Niu, Yiding</au><au>Wang, Yingchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna</atitle><jtitle>Plant and cell physiology</jtitle><addtitle>Plant Cell Physiol</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>60</volume><issue>1</issue><spage>85</spage><epage>106</epage><pages>85-106</pages><issn>0032-0781</issn><eissn>1471-9053</eissn><abstract>Abstract
Reaumuria trigyna is an endangered recretohalophyte and a small archaic feral shrub that is endemic to arid and semi-arid plateau regions of Inner Mongolia, China. Based on transcriptomic data, we isolated a high-affinity potassium transporter gene (RtHKT1) from R. trigyna, which encoded a plasma membrane-localized protein. RtHKT1 was rapidly up-regulated by high Na+ or low K+ and exhibited different tissue-specific expression patterns before and after stress treatment. Transgenic yeast showed tolerance to high Na+ or low K+, while transgenic Arabidopsis exhibited tolerance to high Na+ and sensitivity to high K+, or high Na+–low K+, confirming that Na+ tolerance in transgenic Arabidopsis depends on a sufficient external K+ concentration. Under external high Na+, high K+ and low K+ conditions, transgenic yeast accumulated more Na+–K+, Na+ and K+, while transgenic Arabidopsis accumulated less Na+–more K+, more Na+ and more Na+–K+, respectively, indicating that the ion transport properties of RtHKT1 depend on the external Na+–K+ environment. Salt stress induced up-regulation of some ion transporter genes (AtSOS1/AtHAK5/AtKUP5-6), as well as down-regulation of some genes (AtNHX1/AtAVP1/AtKUP9-12), revealing that multi-ion–transporter synergism maintains Na+/K+ homeostasis under salt stress in transgenic Arabidopsis. Overexpression of RtHKT1 enhanced K+ accumulation and prevented Na+ transport from roots to shoots, improved biomass accumulation and Chl content in salt-stressed transgenic Arabidopsis. The proline content and relative water content increased significantly, and some proline biosynthesis genes (AtP5CS1 and AtP5CS2) were also up-regulated in salt-stressed transgenic plants. These results suggest that RtHKT1 confers salt tolerance on transgenic Arabidopsis by maintaining Na+/K+ homeostasis and osmotic homeostasis.</abstract><cop>Japan</cop><pub>Oxford University Press</pub><pmid>30239906</pmid><doi>10.1093/pcp/pcy187</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2903-4832</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0781 |
ispartof | Plant and cell physiology, 2019-01, Vol.60 (1), p.85-106 |
issn | 0032-0781 1471-9053 |
language | eng |
recordid | cdi_proquest_miscellaneous_2111152302 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Antioxidants - metabolism Arabidopsis - genetics Gene Expression Regulation, Plant - drug effects Green Fluorescent Proteins - metabolism Ion Transport - drug effects Ion Transport - genetics Models, Biological Phylogeny Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Plant Roots - drug effects Plant Roots - metabolism Plant Shoots - drug effects Plant Shoots - metabolism Plants, Genetically Modified Potassium - pharmacology Saccharomyces cerevisiae - metabolism Salt Tolerance - drug effects Salt Tolerance - genetics Salt Tolerance - physiology Seedlings - drug effects Seedlings - genetics Seedlings - growth & development Sodium - pharmacology Sodium Chloride - pharmacology Stress, Physiological - drug effects Stress, Physiological - genetics Tamaricaceae - drug effects Tamaricaceae - genetics Tamaricaceae - physiology |
title | Functional Analysis of Ion Transport Properties and Salt Tolerance Mechanisms of RtHKT1 from the Recretohalophyte Reaumuria trigyna |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20Analysis%20of%20Ion%20Transport%20Properties%20and%20Salt%20Tolerance%20Mechanisms%20of%20RtHKT1%20from%20the%20Recretohalophyte%20Reaumuria%20trigyna&rft.jtitle=Plant%20and%20cell%20physiology&rft.au=Li,%20Ningning&rft.date=2019-01-01&rft.volume=60&rft.issue=1&rft.spage=85&rft.epage=106&rft.pages=85-106&rft.issn=0032-0781&rft.eissn=1471-9053&rft_id=info:doi/10.1093/pcp/pcy187&rft_dat=%3Cproquest_cross%3E2111152302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111152302&rft_id=info:pmid/30239906&rft_oup_id=10.1093/pcp/pcy187&rfr_iscdi=true |