Development and internal validation of a novel risk adjustment model for adult patients undergoing emergency laparotomy surgery: the National Emergency Laparotomy Audit risk model
Among patients undergoing emergency laparotomy, 30-day postoperative mortality is around 10–15%. The risk of death among these patients, however, varies greatly because of their clinical characteristics. We developed a risk prediction model for 30-day postoperative mortality to enable better compari...
Gespeichert in:
Veröffentlicht in: | British journal of anaesthesia : BJA 2018-10, Vol.121 (4), p.739-748 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 748 |
---|---|
container_issue | 4 |
container_start_page | 739 |
container_title | British journal of anaesthesia : BJA |
container_volume | 121 |
creator | Eugene, N. Oliver, C.M. Bassett, M.G. Poulton, T.E. Kuryba, A. Johnston, C. Anderson, I.D. Moonesinghe, S.R. Grocott, M.P. Murray, D.M. Cromwell, D.A. Walker, K. Cripps, Martin Cripps, Paul Davies, Emma Drake, Sharon Galsworthy, Mike Goodwin, James Salih, Tom Lourtie, Jose Papadimitriou, Dimitri Peden, Carol |
description | Among patients undergoing emergency laparotomy, 30-day postoperative mortality is around 10–15%. The risk of death among these patients, however, varies greatly because of their clinical characteristics. We developed a risk prediction model for 30-day postoperative mortality to enable better comparison of outcomes between hospitals.
We analysed data from the National Emergency Laparotomy Audit (NELA) on patients having an emergency laparotomy between December 2013 and November 2015. A prediction model was developed using multivariable logistic regression, with potential risk factors identified from existing prediction models, national guidelines, and clinical experts. Continuous risk factors were transformed if necessary to reflect their non-linear relationship with 30-day mortality. The performance of the model was assessed in terms of its calibration and discrimination. Interval validation was conducted using bootstrap resampling.
There were 4458 (11.5%) deaths within 30-days among the 38 830 patients undergoing emergency laparotomy. Variables associated with death included (among others): age, blood pressure, heart rate, physiological variables, malignancy, and ASA physical status classification. The predicted risk of death among patients ranged from 1% to 50%. The model demonstrated excellent calibration and discrimination, with a C-statistic of 0.863 (95% confidence interval, 0.858–0.867). The model retained its high discrimination during internal validation, with a bootstrap derived C-statistic of 0.861.
The NELA risk prediction model for emergency laparotomies discriminates well between low- and high-risk patients and is suitable for producing risk-adjusted provider mortality statistics. |
doi_str_mv | 10.1016/j.bja.2018.06.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2111149021</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0007091218305786</els_id><sourcerecordid>2111149021</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-39ac91f6df7e9457314c7f6c813f72eb0a3eb3fa25ca9d883cc095000e04c9603</originalsourceid><addsrcrecordid>eNp9kVFvFCEUhYnR2G31B_hiePRlxsswyyz61NRWTTbtiz4TFu5UxhkYgdlkf5d_ULpb65uEBHLynXsCh5A3DGoGTLwf6t2g6wbYpgZRQyOekRVrO1aJrmPPyQoAugoka87IeUoDAOsauX5Jzjg0XJS9Ir8_4R7HME_oM9XeUuczRq9Hutejszq74GnoqaY-FJBGl35SbYcl5aNlCraofYhFXMZM5-IoeqKLtxjvg_P3FKdyQ28OdNSzjiGH6UDTUrR4-EDzD6S3x5wSev2Ebv-hl4t1-ZR8jHtFXvR6TPj68bwg32-uv119qbZ3n79eXW4rw6XIFZfaSNYL23co23XHWWu6XpgN433X4A40xx3vdbM2WtrNhhsDcl3-DKE1UgC_IO9Oc-cYfi2YsppcMjiO2mNYkmpYWa2EhhWUnVATQ0oRezVHN-l4UAzUQ1dqUKUr9dCVAqFKV8Xz9nH8spvQPjn-llOAjycAyyP3DqNKpnyuQesimqxscP8Z_wdEcalX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111149021</pqid></control><display><type>article</type><title>Development and internal validation of a novel risk adjustment model for adult patients undergoing emergency laparotomy surgery: the National Emergency Laparotomy Audit risk model</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Eugene, N. ; Oliver, C.M. ; Bassett, M.G. ; Poulton, T.E. ; Kuryba, A. ; Johnston, C. ; Anderson, I.D. ; Moonesinghe, S.R. ; Grocott, M.P. ; Murray, D.M. ; Cromwell, D.A. ; Walker, K. ; Cripps, Martin ; Cripps, Paul ; Davies, Emma ; Drake, Sharon ; Galsworthy, Mike ; Goodwin, James ; Salih, Tom ; Lourtie, Jose ; Papadimitriou, Dimitri ; Peden, Carol</creator><creatorcontrib>Eugene, N. ; Oliver, C.M. ; Bassett, M.G. ; Poulton, T.E. ; Kuryba, A. ; Johnston, C. ; Anderson, I.D. ; Moonesinghe, S.R. ; Grocott, M.P. ; Murray, D.M. ; Cromwell, D.A. ; Walker, K. ; Cripps, Martin ; Cripps, Paul ; Davies, Emma ; Drake, Sharon ; Galsworthy, Mike ; Goodwin, James ; Salih, Tom ; Lourtie, Jose ; Papadimitriou, Dimitri ; Peden, Carol ; the NELA collaboration ; NELA collaboration</creatorcontrib><description>Among patients undergoing emergency laparotomy, 30-day postoperative mortality is around 10–15%. The risk of death among these patients, however, varies greatly because of their clinical characteristics. We developed a risk prediction model for 30-day postoperative mortality to enable better comparison of outcomes between hospitals.
We analysed data from the National Emergency Laparotomy Audit (NELA) on patients having an emergency laparotomy between December 2013 and November 2015. A prediction model was developed using multivariable logistic regression, with potential risk factors identified from existing prediction models, national guidelines, and clinical experts. Continuous risk factors were transformed if necessary to reflect their non-linear relationship with 30-day mortality. The performance of the model was assessed in terms of its calibration and discrimination. Interval validation was conducted using bootstrap resampling.
There were 4458 (11.5%) deaths within 30-days among the 38 830 patients undergoing emergency laparotomy. Variables associated with death included (among others): age, blood pressure, heart rate, physiological variables, malignancy, and ASA physical status classification. The predicted risk of death among patients ranged from 1% to 50%. The model demonstrated excellent calibration and discrimination, with a C-statistic of 0.863 (95% confidence interval, 0.858–0.867). The model retained its high discrimination during internal validation, with a bootstrap derived C-statistic of 0.861.
The NELA risk prediction model for emergency laparotomies discriminates well between low- and high-risk patients and is suitable for producing risk-adjusted provider mortality statistics.</description><identifier>ISSN: 0007-0912</identifier><identifier>EISSN: 1471-6771</identifier><identifier>DOI: 10.1016/j.bja.2018.06.026</identifier><identifier>PMID: 30236236</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; emergency laparotomy ; Emergency Medical Services - statistics & numerical data ; Female ; Forecasting ; Hemodynamics ; Humans ; Laparotomy - adverse effects ; Laparotomy - mortality ; Laparotomy - statistics & numerical data ; Male ; Medical Audit ; Middle Aged ; Models, Statistical ; Neoplasms - complications ; postoperative mortality ; postoperative outcome ; Reproducibility of Results ; Retrospective Studies ; Risk Adjustment ; Risk Factors ; United Kingdom - epidemiology ; Young Adult</subject><ispartof>British journal of anaesthesia : BJA, 2018-10, Vol.121 (4), p.739-748</ispartof><rights>2018 British Journal of Anaesthesia</rights><rights>Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-39ac91f6df7e9457314c7f6c813f72eb0a3eb3fa25ca9d883cc095000e04c9603</citedby><cites>FETCH-LOGICAL-c396t-39ac91f6df7e9457314c7f6c813f72eb0a3eb3fa25ca9d883cc095000e04c9603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30236236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eugene, N.</creatorcontrib><creatorcontrib>Oliver, C.M.</creatorcontrib><creatorcontrib>Bassett, M.G.</creatorcontrib><creatorcontrib>Poulton, T.E.</creatorcontrib><creatorcontrib>Kuryba, A.</creatorcontrib><creatorcontrib>Johnston, C.</creatorcontrib><creatorcontrib>Anderson, I.D.</creatorcontrib><creatorcontrib>Moonesinghe, S.R.</creatorcontrib><creatorcontrib>Grocott, M.P.</creatorcontrib><creatorcontrib>Murray, D.M.</creatorcontrib><creatorcontrib>Cromwell, D.A.</creatorcontrib><creatorcontrib>Walker, K.</creatorcontrib><creatorcontrib>Cripps, Martin</creatorcontrib><creatorcontrib>Cripps, Paul</creatorcontrib><creatorcontrib>Davies, Emma</creatorcontrib><creatorcontrib>Drake, Sharon</creatorcontrib><creatorcontrib>Galsworthy, Mike</creatorcontrib><creatorcontrib>Goodwin, James</creatorcontrib><creatorcontrib>Salih, Tom</creatorcontrib><creatorcontrib>Lourtie, Jose</creatorcontrib><creatorcontrib>Papadimitriou, Dimitri</creatorcontrib><creatorcontrib>Peden, Carol</creatorcontrib><creatorcontrib>the NELA collaboration</creatorcontrib><creatorcontrib>NELA collaboration</creatorcontrib><title>Development and internal validation of a novel risk adjustment model for adult patients undergoing emergency laparotomy surgery: the National Emergency Laparotomy Audit risk model</title><title>British journal of anaesthesia : BJA</title><addtitle>Br J Anaesth</addtitle><description>Among patients undergoing emergency laparotomy, 30-day postoperative mortality is around 10–15%. The risk of death among these patients, however, varies greatly because of their clinical characteristics. We developed a risk prediction model for 30-day postoperative mortality to enable better comparison of outcomes between hospitals.
We analysed data from the National Emergency Laparotomy Audit (NELA) on patients having an emergency laparotomy between December 2013 and November 2015. A prediction model was developed using multivariable logistic regression, with potential risk factors identified from existing prediction models, national guidelines, and clinical experts. Continuous risk factors were transformed if necessary to reflect their non-linear relationship with 30-day mortality. The performance of the model was assessed in terms of its calibration and discrimination. Interval validation was conducted using bootstrap resampling.
There were 4458 (11.5%) deaths within 30-days among the 38 830 patients undergoing emergency laparotomy. Variables associated with death included (among others): age, blood pressure, heart rate, physiological variables, malignancy, and ASA physical status classification. The predicted risk of death among patients ranged from 1% to 50%. The model demonstrated excellent calibration and discrimination, with a C-statistic of 0.863 (95% confidence interval, 0.858–0.867). The model retained its high discrimination during internal validation, with a bootstrap derived C-statistic of 0.861.
The NELA risk prediction model for emergency laparotomies discriminates well between low- and high-risk patients and is suitable for producing risk-adjusted provider mortality statistics.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>emergency laparotomy</subject><subject>Emergency Medical Services - statistics & numerical data</subject><subject>Female</subject><subject>Forecasting</subject><subject>Hemodynamics</subject><subject>Humans</subject><subject>Laparotomy - adverse effects</subject><subject>Laparotomy - mortality</subject><subject>Laparotomy - statistics & numerical data</subject><subject>Male</subject><subject>Medical Audit</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Neoplasms - complications</subject><subject>postoperative mortality</subject><subject>postoperative outcome</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>Risk Adjustment</subject><subject>Risk Factors</subject><subject>United Kingdom - epidemiology</subject><subject>Young Adult</subject><issn>0007-0912</issn><issn>1471-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kVFvFCEUhYnR2G31B_hiePRlxsswyyz61NRWTTbtiz4TFu5UxhkYgdlkf5d_ULpb65uEBHLynXsCh5A3DGoGTLwf6t2g6wbYpgZRQyOekRVrO1aJrmPPyQoAugoka87IeUoDAOsauX5Jzjg0XJS9Ir8_4R7HME_oM9XeUuczRq9Hutejszq74GnoqaY-FJBGl35SbYcl5aNlCraofYhFXMZM5-IoeqKLtxjvg_P3FKdyQ28OdNSzjiGH6UDTUrR4-EDzD6S3x5wSev2Ebv-hl4t1-ZR8jHtFXvR6TPj68bwg32-uv119qbZ3n79eXW4rw6XIFZfaSNYL23co23XHWWu6XpgN433X4A40xx3vdbM2WtrNhhsDcl3-DKE1UgC_IO9Oc-cYfi2YsppcMjiO2mNYkmpYWa2EhhWUnVATQ0oRezVHN-l4UAzUQ1dqUKUr9dCVAqFKV8Xz9nH8spvQPjn-llOAjycAyyP3DqNKpnyuQesimqxscP8Z_wdEcalX</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Eugene, N.</creator><creator>Oliver, C.M.</creator><creator>Bassett, M.G.</creator><creator>Poulton, T.E.</creator><creator>Kuryba, A.</creator><creator>Johnston, C.</creator><creator>Anderson, I.D.</creator><creator>Moonesinghe, S.R.</creator><creator>Grocott, M.P.</creator><creator>Murray, D.M.</creator><creator>Cromwell, D.A.</creator><creator>Walker, K.</creator><creator>Cripps, Martin</creator><creator>Cripps, Paul</creator><creator>Davies, Emma</creator><creator>Drake, Sharon</creator><creator>Galsworthy, Mike</creator><creator>Goodwin, James</creator><creator>Salih, Tom</creator><creator>Lourtie, Jose</creator><creator>Papadimitriou, Dimitri</creator><creator>Peden, Carol</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201810</creationdate><title>Development and internal validation of a novel risk adjustment model for adult patients undergoing emergency laparotomy surgery: the National Emergency Laparotomy Audit risk model</title><author>Eugene, N. ; Oliver, C.M. ; Bassett, M.G. ; Poulton, T.E. ; Kuryba, A. ; Johnston, C. ; Anderson, I.D. ; Moonesinghe, S.R. ; Grocott, M.P. ; Murray, D.M. ; Cromwell, D.A. ; Walker, K. ; Cripps, Martin ; Cripps, Paul ; Davies, Emma ; Drake, Sharon ; Galsworthy, Mike ; Goodwin, James ; Salih, Tom ; Lourtie, Jose ; Papadimitriou, Dimitri ; Peden, Carol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-39ac91f6df7e9457314c7f6c813f72eb0a3eb3fa25ca9d883cc095000e04c9603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>emergency laparotomy</topic><topic>Emergency Medical Services - statistics & numerical data</topic><topic>Female</topic><topic>Forecasting</topic><topic>Hemodynamics</topic><topic>Humans</topic><topic>Laparotomy - adverse effects</topic><topic>Laparotomy - mortality</topic><topic>Laparotomy - statistics & numerical data</topic><topic>Male</topic><topic>Medical Audit</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Neoplasms - complications</topic><topic>postoperative mortality</topic><topic>postoperative outcome</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>Risk Adjustment</topic><topic>Risk Factors</topic><topic>United Kingdom - epidemiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eugene, N.</creatorcontrib><creatorcontrib>Oliver, C.M.</creatorcontrib><creatorcontrib>Bassett, M.G.</creatorcontrib><creatorcontrib>Poulton, T.E.</creatorcontrib><creatorcontrib>Kuryba, A.</creatorcontrib><creatorcontrib>Johnston, C.</creatorcontrib><creatorcontrib>Anderson, I.D.</creatorcontrib><creatorcontrib>Moonesinghe, S.R.</creatorcontrib><creatorcontrib>Grocott, M.P.</creatorcontrib><creatorcontrib>Murray, D.M.</creatorcontrib><creatorcontrib>Cromwell, D.A.</creatorcontrib><creatorcontrib>Walker, K.</creatorcontrib><creatorcontrib>Cripps, Martin</creatorcontrib><creatorcontrib>Cripps, Paul</creatorcontrib><creatorcontrib>Davies, Emma</creatorcontrib><creatorcontrib>Drake, Sharon</creatorcontrib><creatorcontrib>Galsworthy, Mike</creatorcontrib><creatorcontrib>Goodwin, James</creatorcontrib><creatorcontrib>Salih, Tom</creatorcontrib><creatorcontrib>Lourtie, Jose</creatorcontrib><creatorcontrib>Papadimitriou, Dimitri</creatorcontrib><creatorcontrib>Peden, Carol</creatorcontrib><creatorcontrib>the NELA collaboration</creatorcontrib><creatorcontrib>NELA collaboration</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of anaesthesia : BJA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eugene, N.</au><au>Oliver, C.M.</au><au>Bassett, M.G.</au><au>Poulton, T.E.</au><au>Kuryba, A.</au><au>Johnston, C.</au><au>Anderson, I.D.</au><au>Moonesinghe, S.R.</au><au>Grocott, M.P.</au><au>Murray, D.M.</au><au>Cromwell, D.A.</au><au>Walker, K.</au><au>Cripps, Martin</au><au>Cripps, Paul</au><au>Davies, Emma</au><au>Drake, Sharon</au><au>Galsworthy, Mike</au><au>Goodwin, James</au><au>Salih, Tom</au><au>Lourtie, Jose</au><au>Papadimitriou, Dimitri</au><au>Peden, Carol</au><aucorp>the NELA collaboration</aucorp><aucorp>NELA collaboration</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and internal validation of a novel risk adjustment model for adult patients undergoing emergency laparotomy surgery: the National Emergency Laparotomy Audit risk model</atitle><jtitle>British journal of anaesthesia : BJA</jtitle><addtitle>Br J Anaesth</addtitle><date>2018-10</date><risdate>2018</risdate><volume>121</volume><issue>4</issue><spage>739</spage><epage>748</epage><pages>739-748</pages><issn>0007-0912</issn><eissn>1471-6771</eissn><abstract>Among patients undergoing emergency laparotomy, 30-day postoperative mortality is around 10–15%. The risk of death among these patients, however, varies greatly because of their clinical characteristics. We developed a risk prediction model for 30-day postoperative mortality to enable better comparison of outcomes between hospitals.
We analysed data from the National Emergency Laparotomy Audit (NELA) on patients having an emergency laparotomy between December 2013 and November 2015. A prediction model was developed using multivariable logistic regression, with potential risk factors identified from existing prediction models, national guidelines, and clinical experts. Continuous risk factors were transformed if necessary to reflect their non-linear relationship with 30-day mortality. The performance of the model was assessed in terms of its calibration and discrimination. Interval validation was conducted using bootstrap resampling.
There were 4458 (11.5%) deaths within 30-days among the 38 830 patients undergoing emergency laparotomy. Variables associated with death included (among others): age, blood pressure, heart rate, physiological variables, malignancy, and ASA physical status classification. The predicted risk of death among patients ranged from 1% to 50%. The model demonstrated excellent calibration and discrimination, with a C-statistic of 0.863 (95% confidence interval, 0.858–0.867). The model retained its high discrimination during internal validation, with a bootstrap derived C-statistic of 0.861.
The NELA risk prediction model for emergency laparotomies discriminates well between low- and high-risk patients and is suitable for producing risk-adjusted provider mortality statistics.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>30236236</pmid><doi>10.1016/j.bja.2018.06.026</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-0912 |
ispartof | British journal of anaesthesia : BJA, 2018-10, Vol.121 (4), p.739-748 |
issn | 0007-0912 1471-6771 |
language | eng |
recordid | cdi_proquest_miscellaneous_2111149021 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adolescent Adult Aged Aged, 80 and over emergency laparotomy Emergency Medical Services - statistics & numerical data Female Forecasting Hemodynamics Humans Laparotomy - adverse effects Laparotomy - mortality Laparotomy - statistics & numerical data Male Medical Audit Middle Aged Models, Statistical Neoplasms - complications postoperative mortality postoperative outcome Reproducibility of Results Retrospective Studies Risk Adjustment Risk Factors United Kingdom - epidemiology Young Adult |
title | Development and internal validation of a novel risk adjustment model for adult patients undergoing emergency laparotomy surgery: the National Emergency Laparotomy Audit risk model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20internal%20validation%20of%20a%20novel%20risk%20adjustment%20model%20for%20adult%20patients%20undergoing%20emergency%20laparotomy%20surgery:%20the%20National%20Emergency%20Laparotomy%20Audit%20risk%20model&rft.jtitle=British%20journal%20of%20anaesthesia%20:%20BJA&rft.au=Eugene,%20N.&rft.aucorp=the%20NELA%20collaboration&rft.date=2018-10&rft.volume=121&rft.issue=4&rft.spage=739&rft.epage=748&rft.pages=739-748&rft.issn=0007-0912&rft.eissn=1471-6771&rft_id=info:doi/10.1016/j.bja.2018.06.026&rft_dat=%3Cproquest_cross%3E2111149021%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111149021&rft_id=info:pmid/30236236&rft_els_id=S0007091218305786&rfr_iscdi=true |