Sub-endocardial and sub-epicardial measurement of myocardial blood flow using 13NH3 PET in man

This study examined whether measuring myocardial blood flow (MBF) in the sub-endocardial (SEN) and sub-epicardial (SEP) layers of the left ventricular myocardium using 13NH3 positron emission tomography (PET) and an automated procedure gives reasonable results in patients with known or suspected cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear cardiology 2020-10, Vol.27 (5), p.1665-1674
Hauptverfasser: Sciagrà, Roberto, Milan, Elisa, Giubbini, Raffaele, Kubik, Tomasz, Di Dato, Rossella, Gallo, Lara, Camoni, Luca, Allocca, Michela, Calabretta, Raffaella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1674
container_issue 5
container_start_page 1665
container_title Journal of nuclear cardiology
container_volume 27
creator Sciagrà, Roberto
Milan, Elisa
Giubbini, Raffaele
Kubik, Tomasz
Di Dato, Rossella
Gallo, Lara
Camoni, Luca
Allocca, Michela
Calabretta, Raffaella
description This study examined whether measuring myocardial blood flow (MBF) in the sub-endocardial (SEN) and sub-epicardial (SEP) layers of the left ventricular myocardium using 13NH3 positron emission tomography (PET) and an automated procedure gives reasonable results in patients with known or suspected coronary artery disease (CAD). Resting and stress 13NH3 dynamic PET were performed in 70 patients. Using ≥ 70% diameter stenosis in invasive coronary angiography (ICA) to identify significant CAD, we examined the diagnostic value of SEN- and SEP-MBF, and coronary flow reserve (CFR) vs. the corresponding conventional data averaged on the whole wall thickness. ICA demonstrated 36 patients with significant CAD. Their global stress average [1.61 (1.26, 1.87) mL·min−1·g−1], SEN [1.39 (1.2, 1.59) mL·min−1·g−1] and SEP [1.22 (0.96, 1.44) mL·min−1·g−1] MBF were significantly lower than in the 34 no-CAD patients: 2.05 (1.76, 2.52), 1.72 (1.53, 1.89) and 1.46 (1.23, 1.89) mL·min−1·g−1, respectively, all P < .005. In the 60 CAD vs. the 150 non-CAD territories, stress average MBF was 1.52 (1.10, 1.83) vs. 2.06 (1.69, 2.48) mL·min−1·g−1, SEN-MBF 1.33 (1.02, 1.58) vs. 1.66 (1.35, 1.93) mL·min−1·g−1, and SEP-MBF 1.07 (0.80, 1.29) vs. 1.40 (1.12, 1.69) mL·min−1·g−1, respectively, all P < .05. Using receiver operating characteristics analysis for the presence of significant CAD, the areas under the curve (AUC) were all significant (P < .0001 vs. AUC = 0.5) and similar: stress average MBF = 0.79, SEN-MBF = 0.75, and SEP-MBF = 0.73. AUC was 0.77 for the average CFR, 0.75 for SEN, and 0.70 for SEP CFR. The stress transmural perfusion gradient (TPG) AUC (0.51) was not significant. However, stress TPG was significantly lower in segments subtended by totally occluded arteries vs. those subtended by sub-total stenoses: 1.10 (0.86, 1.33) vs. 1.24 (0.98, 1.56), respectively, P < .005. Automatic assessment of SEN- and SEP-MBF (and CFR) using 13NH3 PET gives reasonable results that are in good agreement with the conventional average whole wall thickness data. Further studies are needed to examine the utility of layer measurements such as in patients with hibernating myocardium or microvascular disease.
doi_str_mv 10.1007/s12350-018-1445-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2111146486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1071358123019979</els_id><sourcerecordid>2110118272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317y-81eb64b25155a5da1fc14a3363e3bc9126968bb4fe9c09df04b7888af7a43a893</originalsourceid><addsrcrecordid>eNp9kU1LHTEUhgepUKv-gO4C3XSTmpOPSUJXRWwVpBVqt4ZMJiORmeQ2uaPMvzeXqRZc3GxOODzP4XDepvkI5AsQIs8KUCYIJqAwcC7wctAcgWAUt0LAu_onEjATCt43H0p5IIRopvVRc_d77rCPfXI298GOyMYelV1vE15ak7dlzn7ycYvSgKblFe7GlHo0jOkJzSXEewTs5yVDNxe3KEQ02XjSHA52LP70Xz1u_ny_uD2_xNe_flydf7vGjoFcsALftbyjAoSworcwOOCWsZZ51jkNtNWt6jo-eO2I7gfCO6mUsoO0nFml2XHzeZ27yenv7MvWTKE4P442-jQXQ6E-3nLVVvTTG_QhzTnW7QzlkkkttJR7KQACoKiklYKVcjmVkv1gNjlMNi8GiNnlYtZcTM3F7HIxS3Xo6pTKxnuf_0_eJ31dJV-P-BiqVFzw0fk-ZO-2pk9hj_0MEcuhwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110118272</pqid></control><display><type>article</type><title>Sub-endocardial and sub-epicardial measurement of myocardial blood flow using 13NH3 PET in man</title><source>SpringerLink Journals</source><creator>Sciagrà, Roberto ; Milan, Elisa ; Giubbini, Raffaele ; Kubik, Tomasz ; Di Dato, Rossella ; Gallo, Lara ; Camoni, Luca ; Allocca, Michela ; Calabretta, Raffaella</creator><creatorcontrib>Sciagrà, Roberto ; Milan, Elisa ; Giubbini, Raffaele ; Kubik, Tomasz ; Di Dato, Rossella ; Gallo, Lara ; Camoni, Luca ; Allocca, Michela ; Calabretta, Raffaella</creatorcontrib><description>This study examined whether measuring myocardial blood flow (MBF) in the sub-endocardial (SEN) and sub-epicardial (SEP) layers of the left ventricular myocardium using 13NH3 positron emission tomography (PET) and an automated procedure gives reasonable results in patients with known or suspected coronary artery disease (CAD). Resting and stress 13NH3 dynamic PET were performed in 70 patients. Using ≥ 70% diameter stenosis in invasive coronary angiography (ICA) to identify significant CAD, we examined the diagnostic value of SEN- and SEP-MBF, and coronary flow reserve (CFR) vs. the corresponding conventional data averaged on the whole wall thickness. ICA demonstrated 36 patients with significant CAD. Their global stress average [1.61 (1.26, 1.87) mL·min−1·g−1], SEN [1.39 (1.2, 1.59) mL·min−1·g−1] and SEP [1.22 (0.96, 1.44) mL·min−1·g−1] MBF were significantly lower than in the 34 no-CAD patients: 2.05 (1.76, 2.52), 1.72 (1.53, 1.89) and 1.46 (1.23, 1.89) mL·min−1·g−1, respectively, all P &lt; .005. In the 60 CAD vs. the 150 non-CAD territories, stress average MBF was 1.52 (1.10, 1.83) vs. 2.06 (1.69, 2.48) mL·min−1·g−1, SEN-MBF 1.33 (1.02, 1.58) vs. 1.66 (1.35, 1.93) mL·min−1·g−1, and SEP-MBF 1.07 (0.80, 1.29) vs. 1.40 (1.12, 1.69) mL·min−1·g−1, respectively, all P &lt; .05. Using receiver operating characteristics analysis for the presence of significant CAD, the areas under the curve (AUC) were all significant (P &lt; .0001 vs. AUC = 0.5) and similar: stress average MBF = 0.79, SEN-MBF = 0.75, and SEP-MBF = 0.73. AUC was 0.77 for the average CFR, 0.75 for SEN, and 0.70 for SEP CFR. The stress transmural perfusion gradient (TPG) AUC (0.51) was not significant. However, stress TPG was significantly lower in segments subtended by totally occluded arteries vs. those subtended by sub-total stenoses: 1.10 (0.86, 1.33) vs. 1.24 (0.98, 1.56), respectively, P &lt; .005. Automatic assessment of SEN- and SEP-MBF (and CFR) using 13NH3 PET gives reasonable results that are in good agreement with the conventional average whole wall thickness data. Further studies are needed to examine the utility of layer measurements such as in patients with hibernating myocardium or microvascular disease.</description><identifier>ISSN: 1071-3581</identifier><identifier>EISSN: 1532-6551</identifier><identifier>DOI: 10.1007/s12350-018-1445-y</identifier><language>eng</language><publisher>Cham: Elsevier Inc</publisher><subject>Cardiology ; Cardiovascular disease ; Coronary artery disease ; Imaging ; invasive coronary angiography ; Medicine ; Medicine &amp; Public Health ; myocardial blood flow ; N-13-ammonia ; Nuclear Medicine ; Original Article ; positron emission tomography ; Radiology</subject><ispartof>Journal of nuclear cardiology, 2020-10, Vol.27 (5), p.1665-1674</ispartof><rights>2020 American Society of Nuclear Cardiology. Published by ELSEVIER INC. All rights reserved.</rights><rights>American Society of Nuclear Cardiology 2018</rights><rights>Journal of Nuclear Cardiology is a copyright of Springer, (2018). All Rights Reserved.</rights><rights>American Society of Nuclear Cardiology 2018.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317y-81eb64b25155a5da1fc14a3363e3bc9126968bb4fe9c09df04b7888af7a43a893</citedby><cites>FETCH-LOGICAL-c317y-81eb64b25155a5da1fc14a3363e3bc9126968bb4fe9c09df04b7888af7a43a893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12350-018-1445-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12350-018-1445-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sciagrà, Roberto</creatorcontrib><creatorcontrib>Milan, Elisa</creatorcontrib><creatorcontrib>Giubbini, Raffaele</creatorcontrib><creatorcontrib>Kubik, Tomasz</creatorcontrib><creatorcontrib>Di Dato, Rossella</creatorcontrib><creatorcontrib>Gallo, Lara</creatorcontrib><creatorcontrib>Camoni, Luca</creatorcontrib><creatorcontrib>Allocca, Michela</creatorcontrib><creatorcontrib>Calabretta, Raffaella</creatorcontrib><title>Sub-endocardial and sub-epicardial measurement of myocardial blood flow using 13NH3 PET in man</title><title>Journal of nuclear cardiology</title><addtitle>J. Nucl. Cardiol</addtitle><description>This study examined whether measuring myocardial blood flow (MBF) in the sub-endocardial (SEN) and sub-epicardial (SEP) layers of the left ventricular myocardium using 13NH3 positron emission tomography (PET) and an automated procedure gives reasonable results in patients with known or suspected coronary artery disease (CAD). Resting and stress 13NH3 dynamic PET were performed in 70 patients. Using ≥ 70% diameter stenosis in invasive coronary angiography (ICA) to identify significant CAD, we examined the diagnostic value of SEN- and SEP-MBF, and coronary flow reserve (CFR) vs. the corresponding conventional data averaged on the whole wall thickness. ICA demonstrated 36 patients with significant CAD. Their global stress average [1.61 (1.26, 1.87) mL·min−1·g−1], SEN [1.39 (1.2, 1.59) mL·min−1·g−1] and SEP [1.22 (0.96, 1.44) mL·min−1·g−1] MBF were significantly lower than in the 34 no-CAD patients: 2.05 (1.76, 2.52), 1.72 (1.53, 1.89) and 1.46 (1.23, 1.89) mL·min−1·g−1, respectively, all P &lt; .005. In the 60 CAD vs. the 150 non-CAD territories, stress average MBF was 1.52 (1.10, 1.83) vs. 2.06 (1.69, 2.48) mL·min−1·g−1, SEN-MBF 1.33 (1.02, 1.58) vs. 1.66 (1.35, 1.93) mL·min−1·g−1, and SEP-MBF 1.07 (0.80, 1.29) vs. 1.40 (1.12, 1.69) mL·min−1·g−1, respectively, all P &lt; .05. Using receiver operating characteristics analysis for the presence of significant CAD, the areas under the curve (AUC) were all significant (P &lt; .0001 vs. AUC = 0.5) and similar: stress average MBF = 0.79, SEN-MBF = 0.75, and SEP-MBF = 0.73. AUC was 0.77 for the average CFR, 0.75 for SEN, and 0.70 for SEP CFR. The stress transmural perfusion gradient (TPG) AUC (0.51) was not significant. However, stress TPG was significantly lower in segments subtended by totally occluded arteries vs. those subtended by sub-total stenoses: 1.10 (0.86, 1.33) vs. 1.24 (0.98, 1.56), respectively, P &lt; .005. Automatic assessment of SEN- and SEP-MBF (and CFR) using 13NH3 PET gives reasonable results that are in good agreement with the conventional average whole wall thickness data. Further studies are needed to examine the utility of layer measurements such as in patients with hibernating myocardium or microvascular disease.</description><subject>Cardiology</subject><subject>Cardiovascular disease</subject><subject>Coronary artery disease</subject><subject>Imaging</subject><subject>invasive coronary angiography</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>myocardial blood flow</subject><subject>N-13-ammonia</subject><subject>Nuclear Medicine</subject><subject>Original Article</subject><subject>positron emission tomography</subject><subject>Radiology</subject><issn>1071-3581</issn><issn>1532-6551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU1LHTEUhgepUKv-gO4C3XSTmpOPSUJXRWwVpBVqt4ZMJiORmeQ2uaPMvzeXqRZc3GxOODzP4XDepvkI5AsQIs8KUCYIJqAwcC7wctAcgWAUt0LAu_onEjATCt43H0p5IIRopvVRc_d77rCPfXI298GOyMYelV1vE15ak7dlzn7ycYvSgKblFe7GlHo0jOkJzSXEewTs5yVDNxe3KEQ02XjSHA52LP70Xz1u_ny_uD2_xNe_flydf7vGjoFcsALftbyjAoSworcwOOCWsZZ51jkNtNWt6jo-eO2I7gfCO6mUsoO0nFml2XHzeZ27yenv7MvWTKE4P442-jQXQ6E-3nLVVvTTG_QhzTnW7QzlkkkttJR7KQACoKiklYKVcjmVkv1gNjlMNi8GiNnlYtZcTM3F7HIxS3Xo6pTKxnuf_0_eJ31dJV-P-BiqVFzw0fk-ZO-2pk9hj_0MEcuhwg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Sciagrà, Roberto</creator><creator>Milan, Elisa</creator><creator>Giubbini, Raffaele</creator><creator>Kubik, Tomasz</creator><creator>Di Dato, Rossella</creator><creator>Gallo, Lara</creator><creator>Camoni, Luca</creator><creator>Allocca, Michela</creator><creator>Calabretta, Raffaella</creator><general>Elsevier Inc</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20201001</creationdate><title>Sub-endocardial and sub-epicardial measurement of myocardial blood flow using 13NH3 PET in man</title><author>Sciagrà, Roberto ; Milan, Elisa ; Giubbini, Raffaele ; Kubik, Tomasz ; Di Dato, Rossella ; Gallo, Lara ; Camoni, Luca ; Allocca, Michela ; Calabretta, Raffaella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317y-81eb64b25155a5da1fc14a3363e3bc9126968bb4fe9c09df04b7888af7a43a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cardiology</topic><topic>Cardiovascular disease</topic><topic>Coronary artery disease</topic><topic>Imaging</topic><topic>invasive coronary angiography</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>myocardial blood flow</topic><topic>N-13-ammonia</topic><topic>Nuclear Medicine</topic><topic>Original Article</topic><topic>positron emission tomography</topic><topic>Radiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sciagrà, Roberto</creatorcontrib><creatorcontrib>Milan, Elisa</creatorcontrib><creatorcontrib>Giubbini, Raffaele</creatorcontrib><creatorcontrib>Kubik, Tomasz</creatorcontrib><creatorcontrib>Di Dato, Rossella</creatorcontrib><creatorcontrib>Gallo, Lara</creatorcontrib><creatorcontrib>Camoni, Luca</creatorcontrib><creatorcontrib>Allocca, Michela</creatorcontrib><creatorcontrib>Calabretta, Raffaella</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of nuclear cardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sciagrà, Roberto</au><au>Milan, Elisa</au><au>Giubbini, Raffaele</au><au>Kubik, Tomasz</au><au>Di Dato, Rossella</au><au>Gallo, Lara</au><au>Camoni, Luca</au><au>Allocca, Michela</au><au>Calabretta, Raffaella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sub-endocardial and sub-epicardial measurement of myocardial blood flow using 13NH3 PET in man</atitle><jtitle>Journal of nuclear cardiology</jtitle><stitle>J. Nucl. Cardiol</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>27</volume><issue>5</issue><spage>1665</spage><epage>1674</epage><pages>1665-1674</pages><issn>1071-3581</issn><eissn>1532-6551</eissn><abstract>This study examined whether measuring myocardial blood flow (MBF) in the sub-endocardial (SEN) and sub-epicardial (SEP) layers of the left ventricular myocardium using 13NH3 positron emission tomography (PET) and an automated procedure gives reasonable results in patients with known or suspected coronary artery disease (CAD). Resting and stress 13NH3 dynamic PET were performed in 70 patients. Using ≥ 70% diameter stenosis in invasive coronary angiography (ICA) to identify significant CAD, we examined the diagnostic value of SEN- and SEP-MBF, and coronary flow reserve (CFR) vs. the corresponding conventional data averaged on the whole wall thickness. ICA demonstrated 36 patients with significant CAD. Their global stress average [1.61 (1.26, 1.87) mL·min−1·g−1], SEN [1.39 (1.2, 1.59) mL·min−1·g−1] and SEP [1.22 (0.96, 1.44) mL·min−1·g−1] MBF were significantly lower than in the 34 no-CAD patients: 2.05 (1.76, 2.52), 1.72 (1.53, 1.89) and 1.46 (1.23, 1.89) mL·min−1·g−1, respectively, all P &lt; .005. In the 60 CAD vs. the 150 non-CAD territories, stress average MBF was 1.52 (1.10, 1.83) vs. 2.06 (1.69, 2.48) mL·min−1·g−1, SEN-MBF 1.33 (1.02, 1.58) vs. 1.66 (1.35, 1.93) mL·min−1·g−1, and SEP-MBF 1.07 (0.80, 1.29) vs. 1.40 (1.12, 1.69) mL·min−1·g−1, respectively, all P &lt; .05. Using receiver operating characteristics analysis for the presence of significant CAD, the areas under the curve (AUC) were all significant (P &lt; .0001 vs. AUC = 0.5) and similar: stress average MBF = 0.79, SEN-MBF = 0.75, and SEP-MBF = 0.73. AUC was 0.77 for the average CFR, 0.75 for SEN, and 0.70 for SEP CFR. The stress transmural perfusion gradient (TPG) AUC (0.51) was not significant. However, stress TPG was significantly lower in segments subtended by totally occluded arteries vs. those subtended by sub-total stenoses: 1.10 (0.86, 1.33) vs. 1.24 (0.98, 1.56), respectively, P &lt; .005. Automatic assessment of SEN- and SEP-MBF (and CFR) using 13NH3 PET gives reasonable results that are in good agreement with the conventional average whole wall thickness data. Further studies are needed to examine the utility of layer measurements such as in patients with hibernating myocardium or microvascular disease.</abstract><cop>Cham</cop><pub>Elsevier Inc</pub><doi>10.1007/s12350-018-1445-y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1071-3581
ispartof Journal of nuclear cardiology, 2020-10, Vol.27 (5), p.1665-1674
issn 1071-3581
1532-6551
language eng
recordid cdi_proquest_miscellaneous_2111146486
source SpringerLink Journals
subjects Cardiology
Cardiovascular disease
Coronary artery disease
Imaging
invasive coronary angiography
Medicine
Medicine & Public Health
myocardial blood flow
N-13-ammonia
Nuclear Medicine
Original Article
positron emission tomography
Radiology
title Sub-endocardial and sub-epicardial measurement of myocardial blood flow using 13NH3 PET in man
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T00%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sub-endocardial%20and%20sub-epicardial%20measurement%20of%20myocardial%20blood%20flow%20using%2013NH3%20PET%20in%20man&rft.jtitle=Journal%20of%20nuclear%20cardiology&rft.au=Sciagr%C3%A0,%20Roberto&rft.date=2020-10-01&rft.volume=27&rft.issue=5&rft.spage=1665&rft.epage=1674&rft.pages=1665-1674&rft.issn=1071-3581&rft.eissn=1532-6551&rft_id=info:doi/10.1007/s12350-018-1445-y&rft_dat=%3Cproquest_cross%3E2110118272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110118272&rft_id=info:pmid/&rft_els_id=S1071358123019979&rfr_iscdi=true