Photolithographically Patterned Hydrogels with Programmed Deformations

Programmed deformations are widespread in nature, providing elegant paradigms to design self‐morphing materials with promising applications in biomedical devices, flexible electronics, soft robotics, etc. In this emerging field, hydrogels are an ideal material to investigate the deformation principl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry, an Asian journal an Asian journal, 2019-01, Vol.14 (1), p.94-104
Hauptverfasser: Li, Chen Yu, Hao, Xing Peng, Wu, Zi Liang, Zheng, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104
container_issue 1
container_start_page 94
container_title Chemistry, an Asian journal
container_volume 14
creator Li, Chen Yu
Hao, Xing Peng
Wu, Zi Liang
Zheng, Qiang
description Programmed deformations are widespread in nature, providing elegant paradigms to design self‐morphing materials with promising applications in biomedical devices, flexible electronics, soft robotics, etc. In this emerging field, hydrogels are an ideal material to investigate the deformation principle and the structure‐deformation relationship. One crucial step is to construct heterogeneous structures in a facile yet effective way. Herein, we provide a focus review on different deformation modes and corresponding structural features of hydrogels. Photolithography is a versatile approach to control the outer shape of the hydrogel and spatial distribution of the component in the hydrogel, endowing the patterned hydrogels with programmed internal stress and thus controllable deformations. Specifically, cooperative deformations take place in periodically patterned hydrogels with in‐plane gradients, and multiple morphing structures are formed in one patterned hydrogel using selective preswelling to direct the buckling of each unit. The structural control strategy and deformation principles should be applicable to other materials with broad applications in diverse areas. Patterning‐assisted deformations: This review summarizes recent progress on the programmed deformations of hydrogels, in which the heterogeneous structures are constructed with the assistance of photolithography. The control of outer shape or spatial distribution of the component affords the patterned hydrogels programmable deformations and promising applications in soft actuators, biomedical devices, etc.
doi_str_mv 10.1002/asia.201801333
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2111145586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2163188458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-acc4834b77d2081e24b505817784647232059f9f8aab62fd0e765430f0ebccce3</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgipvTq0cZePHS-eajbXoc07nBwIEK3kqapltH2sykZfS_N2NzghdzSeD95eHlQegWwwgDkEfhSjEigDlgSukZ6mMe4YDF-PP89Ca8h66c2wCEBBJ-iXoUCE1whPtoulybxuiyWZuVFdt1KYXW3XApmkbZWuXDWZdbs1LaDXceDZd276rKT55UYWwlmtLU7hpdFEI7dXO8B-hj-vw-mQWL15f5ZLwIJMNAAyEl45RlcZwT4FgRloUQchzHnEV-UUogTIqk4EJkESlyUHEUMgoFqExKqegAPRxyt9Z8tco1aVU6qbQWtTKtSwn2h4Uhjzy9_0M3prW1386riGLOWci9Gh2UtMY5q4p0a8tK2C7FkO4bTvcNp6eG_Ye7Y2yb-RZO_KdSD5ID2JVadf_EpeO3-fg3_Btom4cY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2163188458</pqid></control><display><type>article</type><title>Photolithographically Patterned Hydrogels with Programmed Deformations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Chen Yu ; Hao, Xing Peng ; Wu, Zi Liang ; Zheng, Qiang</creator><creatorcontrib>Li, Chen Yu ; Hao, Xing Peng ; Wu, Zi Liang ; Zheng, Qiang</creatorcontrib><description>Programmed deformations are widespread in nature, providing elegant paradigms to design self‐morphing materials with promising applications in biomedical devices, flexible electronics, soft robotics, etc. In this emerging field, hydrogels are an ideal material to investigate the deformation principle and the structure‐deformation relationship. One crucial step is to construct heterogeneous structures in a facile yet effective way. Herein, we provide a focus review on different deformation modes and corresponding structural features of hydrogels. Photolithography is a versatile approach to control the outer shape of the hydrogel and spatial distribution of the component in the hydrogel, endowing the patterned hydrogels with programmed internal stress and thus controllable deformations. Specifically, cooperative deformations take place in periodically patterned hydrogels with in‐plane gradients, and multiple morphing structures are formed in one patterned hydrogel using selective preswelling to direct the buckling of each unit. The structural control strategy and deformation principles should be applicable to other materials with broad applications in diverse areas. Patterning‐assisted deformations: This review summarizes recent progress on the programmed deformations of hydrogels, in which the heterogeneous structures are constructed with the assistance of photolithography. The control of outer shape or spatial distribution of the component affords the patterned hydrogels programmable deformations and promising applications in soft actuators, biomedical devices, etc.</description><identifier>ISSN: 1861-4728</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.201801333</identifier><identifier>PMID: 30239161</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biomedical materials ; Chemistry ; Cooperative control ; Deformation ; Deformation effects ; Electronic devices ; Flexible components ; gradient structures ; Hydrogels ; Morphing ; Photolithography ; programmed deformations ; Residual stress ; Robotics ; Spatial distribution ; Stability</subject><ispartof>Chemistry, an Asian journal, 2019-01, Vol.14 (1), p.94-104</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-acc4834b77d2081e24b505817784647232059f9f8aab62fd0e765430f0ebccce3</citedby><cites>FETCH-LOGICAL-c4103-acc4834b77d2081e24b505817784647232059f9f8aab62fd0e765430f0ebccce3</cites><orcidid>0000-0002-1824-9563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasia.201801333$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasia.201801333$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30239161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chen Yu</creatorcontrib><creatorcontrib>Hao, Xing Peng</creatorcontrib><creatorcontrib>Wu, Zi Liang</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><title>Photolithographically Patterned Hydrogels with Programmed Deformations</title><title>Chemistry, an Asian journal</title><addtitle>Chem Asian J</addtitle><description>Programmed deformations are widespread in nature, providing elegant paradigms to design self‐morphing materials with promising applications in biomedical devices, flexible electronics, soft robotics, etc. In this emerging field, hydrogels are an ideal material to investigate the deformation principle and the structure‐deformation relationship. One crucial step is to construct heterogeneous structures in a facile yet effective way. Herein, we provide a focus review on different deformation modes and corresponding structural features of hydrogels. Photolithography is a versatile approach to control the outer shape of the hydrogel and spatial distribution of the component in the hydrogel, endowing the patterned hydrogels with programmed internal stress and thus controllable deformations. Specifically, cooperative deformations take place in periodically patterned hydrogels with in‐plane gradients, and multiple morphing structures are formed in one patterned hydrogel using selective preswelling to direct the buckling of each unit. The structural control strategy and deformation principles should be applicable to other materials with broad applications in diverse areas. Patterning‐assisted deformations: This review summarizes recent progress on the programmed deformations of hydrogels, in which the heterogeneous structures are constructed with the assistance of photolithography. The control of outer shape or spatial distribution of the component affords the patterned hydrogels programmable deformations and promising applications in soft actuators, biomedical devices, etc.</description><subject>Biomedical materials</subject><subject>Chemistry</subject><subject>Cooperative control</subject><subject>Deformation</subject><subject>Deformation effects</subject><subject>Electronic devices</subject><subject>Flexible components</subject><subject>gradient structures</subject><subject>Hydrogels</subject><subject>Morphing</subject><subject>Photolithography</subject><subject>programmed deformations</subject><subject>Residual stress</subject><subject>Robotics</subject><subject>Spatial distribution</subject><subject>Stability</subject><issn>1861-4728</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqF0M1LwzAYBvAgipvTq0cZePHS-eajbXoc07nBwIEK3kqapltH2sykZfS_N2NzghdzSeD95eHlQegWwwgDkEfhSjEigDlgSukZ6mMe4YDF-PP89Ca8h66c2wCEBBJ-iXoUCE1whPtoulybxuiyWZuVFdt1KYXW3XApmkbZWuXDWZdbs1LaDXceDZd276rKT55UYWwlmtLU7hpdFEI7dXO8B-hj-vw-mQWL15f5ZLwIJMNAAyEl45RlcZwT4FgRloUQchzHnEV-UUogTIqk4EJkESlyUHEUMgoFqExKqegAPRxyt9Z8tco1aVU6qbQWtTKtSwn2h4Uhjzy9_0M3prW1386riGLOWci9Gh2UtMY5q4p0a8tK2C7FkO4bTvcNp6eG_Ye7Y2yb-RZO_KdSD5ID2JVadf_EpeO3-fg3_Btom4cY</recordid><startdate>20190104</startdate><enddate>20190104</enddate><creator>Li, Chen Yu</creator><creator>Hao, Xing Peng</creator><creator>Wu, Zi Liang</creator><creator>Zheng, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1824-9563</orcidid></search><sort><creationdate>20190104</creationdate><title>Photolithographically Patterned Hydrogels with Programmed Deformations</title><author>Li, Chen Yu ; Hao, Xing Peng ; Wu, Zi Liang ; Zheng, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-acc4834b77d2081e24b505817784647232059f9f8aab62fd0e765430f0ebccce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomedical materials</topic><topic>Chemistry</topic><topic>Cooperative control</topic><topic>Deformation</topic><topic>Deformation effects</topic><topic>Electronic devices</topic><topic>Flexible components</topic><topic>gradient structures</topic><topic>Hydrogels</topic><topic>Morphing</topic><topic>Photolithography</topic><topic>programmed deformations</topic><topic>Residual stress</topic><topic>Robotics</topic><topic>Spatial distribution</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chen Yu</creatorcontrib><creatorcontrib>Hao, Xing Peng</creatorcontrib><creatorcontrib>Wu, Zi Liang</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chen Yu</au><au>Hao, Xing Peng</au><au>Wu, Zi Liang</au><au>Zheng, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photolithographically Patterned Hydrogels with Programmed Deformations</atitle><jtitle>Chemistry, an Asian journal</jtitle><addtitle>Chem Asian J</addtitle><date>2019-01-04</date><risdate>2019</risdate><volume>14</volume><issue>1</issue><spage>94</spage><epage>104</epage><pages>94-104</pages><issn>1861-4728</issn><eissn>1861-471X</eissn><abstract>Programmed deformations are widespread in nature, providing elegant paradigms to design self‐morphing materials with promising applications in biomedical devices, flexible electronics, soft robotics, etc. In this emerging field, hydrogels are an ideal material to investigate the deformation principle and the structure‐deformation relationship. One crucial step is to construct heterogeneous structures in a facile yet effective way. Herein, we provide a focus review on different deformation modes and corresponding structural features of hydrogels. Photolithography is a versatile approach to control the outer shape of the hydrogel and spatial distribution of the component in the hydrogel, endowing the patterned hydrogels with programmed internal stress and thus controllable deformations. Specifically, cooperative deformations take place in periodically patterned hydrogels with in‐plane gradients, and multiple morphing structures are formed in one patterned hydrogel using selective preswelling to direct the buckling of each unit. The structural control strategy and deformation principles should be applicable to other materials with broad applications in diverse areas. Patterning‐assisted deformations: This review summarizes recent progress on the programmed deformations of hydrogels, in which the heterogeneous structures are constructed with the assistance of photolithography. The control of outer shape or spatial distribution of the component affords the patterned hydrogels programmable deformations and promising applications in soft actuators, biomedical devices, etc.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30239161</pmid><doi>10.1002/asia.201801333</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1824-9563</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-4728
ispartof Chemistry, an Asian journal, 2019-01, Vol.14 (1), p.94-104
issn 1861-4728
1861-471X
language eng
recordid cdi_proquest_miscellaneous_2111145586
source Wiley Online Library Journals Frontfile Complete
subjects Biomedical materials
Chemistry
Cooperative control
Deformation
Deformation effects
Electronic devices
Flexible components
gradient structures
Hydrogels
Morphing
Photolithography
programmed deformations
Residual stress
Robotics
Spatial distribution
Stability
title Photolithographically Patterned Hydrogels with Programmed Deformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photolithographically%20Patterned%20Hydrogels%20with%20Programmed%20Deformations&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Li,%20Chen%20Yu&rft.date=2019-01-04&rft.volume=14&rft.issue=1&rft.spage=94&rft.epage=104&rft.pages=94-104&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.201801333&rft_dat=%3Cproquest_cross%3E2163188458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2163188458&rft_id=info:pmid/30239161&rfr_iscdi=true