Mechanistic Studies of the Bypass of a Bulky Single-base Lesion Catalyzed by a Y-family DNA Polymerase

1-Nitropyrene, the most abundant nitro polycyclic aromatic hydrocarbon in diesel emissions, has been found to react with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). This bulky adduct has been shown to induce genetic mutations, which may implicate Y-family DNA polymerases i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-03, Vol.284 (10), p.6379-6388
Hauptverfasser: Sherrer, Shanen M., Brown, Jessica A., Pack, Lindsey R., Jasti, Vijay P., Fowler, Jason D., Basu, Ashis K., Suo, Zucai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6388
container_issue 10
container_start_page 6379
container_title The Journal of biological chemistry
container_volume 284
creator Sherrer, Shanen M.
Brown, Jessica A.
Pack, Lindsey R.
Jasti, Vijay P.
Fowler, Jason D.
Basu, Ashis K.
Suo, Zucai
description 1-Nitropyrene, the most abundant nitro polycyclic aromatic hydrocarbon in diesel emissions, has been found to react with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). This bulky adduct has been shown to induce genetic mutations, which may implicate Y-family DNA polymerases in its bypass in vivo. To establish a kinetic mechanism for the bypass of such a prototype single-base lesion, we employed pre-steady-state kinetic methods to investigate individual nucleotide incorporations upstream, opposite, and downstream from a site-specifically placed dGAP lesion catalyzed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. Dpo4 was able to bypass dGAP but paused strongly at two sites: opposite the lesion and immediately downstream from the lesion. Both nucleotide incorporation efficiency and fidelity decreased significantly at the pause sites, especially during extension of the bypass product. Interestingly, a 4-fold tighter binding affinity of damaged DNA to Dpo4 promoted catalysis through putative interactions between the active site residues of Dpo4 and 1-aminopyrene moiety at the first pause site. In the presence of a DNA trap, the kinetics of nucleotide incorporation at these sites was biphasic in which a small, fast phase preceded a larger, slow phase. In contrast, only a large, fast phase was observed during nucleotide incorporation at non-pause sites. Our kinetic studies support a general kinetic mechanism for lesion bypass catalyzed by numerous DNA polymerases.
doi_str_mv 10.1074/jbc.M808161200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21096201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820326661</els_id><sourcerecordid>21096201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-3d49281d74f59094f611c6f69ca7f217edf6742ce75ab0d07f5d9b882e3625c13</originalsourceid><addsrcrecordid>eNp10M2L1DAYBvAgiju7evWoAcFbxyRt0-S4O37CrArjgp5CmryZZu3HbNKu1L_ejB3Yk7mEwC8PDw9CLyhZU1IVb29rs74WRFBOGSGP0IoSkWd5SX88RitCGM0kK8UZOo_xlqRTSPoUnVFJWVHwcoXcNZhG9z6O3uDdOFkPEQ8Ojw3gq_mg47-XxldT-2vGO9_vW8hqHQFvIfqhxxs96nb-AxbXc3I_M6c738743ZdL_G1o5w5C0s_QE6fbCM9P9wW6-fD---ZTtv368fPmcpuZ1GbMcltIJqitCldKIgvHKTXccWl05RitwDpeFcxAVeqaWFK50spaCAY5Z6Wh-QV6s-QewnA3QRxV56OBttU9DFNUjBLJGTnC9QJNGGIM4NQh-E6HWVGijsuqtKx6WDZ9eHlKnuoO7AM_TZnA6wU0ft_89gFU7QfTQKeYKI6pPK9kUq8W5fSg9D74qG52x0KEllJwKpIQi4C0072HoKLx0BuwKdOMyg7-fx3_AoBdmo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21096201</pqid></control><display><type>article</type><title>Mechanistic Studies of the Bypass of a Bulky Single-base Lesion Catalyzed by a Y-family DNA Polymerase</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sherrer, Shanen M. ; Brown, Jessica A. ; Pack, Lindsey R. ; Jasti, Vijay P. ; Fowler, Jason D. ; Basu, Ashis K. ; Suo, Zucai</creator><creatorcontrib>Sherrer, Shanen M. ; Brown, Jessica A. ; Pack, Lindsey R. ; Jasti, Vijay P. ; Fowler, Jason D. ; Basu, Ashis K. ; Suo, Zucai</creatorcontrib><description>1-Nitropyrene, the most abundant nitro polycyclic aromatic hydrocarbon in diesel emissions, has been found to react with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). This bulky adduct has been shown to induce genetic mutations, which may implicate Y-family DNA polymerases in its bypass in vivo. To establish a kinetic mechanism for the bypass of such a prototype single-base lesion, we employed pre-steady-state kinetic methods to investigate individual nucleotide incorporations upstream, opposite, and downstream from a site-specifically placed dGAP lesion catalyzed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. Dpo4 was able to bypass dGAP but paused strongly at two sites: opposite the lesion and immediately downstream from the lesion. Both nucleotide incorporation efficiency and fidelity decreased significantly at the pause sites, especially during extension of the bypass product. Interestingly, a 4-fold tighter binding affinity of damaged DNA to Dpo4 promoted catalysis through putative interactions between the active site residues of Dpo4 and 1-aminopyrene moiety at the first pause site. In the presence of a DNA trap, the kinetics of nucleotide incorporation at these sites was biphasic in which a small, fast phase preceded a larger, slow phase. In contrast, only a large, fast phase was observed during nucleotide incorporation at non-pause sites. Our kinetic studies support a general kinetic mechanism for lesion bypass catalyzed by numerous DNA polymerases.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M808161200</identifier><identifier>PMID: 19124465</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>1-Nitropyrene ; Adducts ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Catalysis ; Diesel ; DNA Adducts - chemistry ; DNA Adducts - genetics ; DNA Adducts - metabolism ; DNA Damage - physiology ; DNA, Archaeal - chemistry ; DNA, Archaeal - genetics ; DNA, Archaeal - metabolism ; DNA-directed DNA polymerase ; DNA-Directed DNA Polymerase - chemistry ; DNA-Directed DNA Polymerase - genetics ; Fidelity ; Kinetics ; Mutation ; Nucleotides ; Polycyclic aromatic hydrocarbons ; Pyrenes - chemistry ; Sulfolobus solfataricus ; Sulfolobus solfataricus - enzymology ; Sulfolobus solfataricus - genetics ; Vehicle Emissions</subject><ispartof>The Journal of biological chemistry, 2009-03, Vol.284 (10), p.6379-6388</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-3d49281d74f59094f611c6f69ca7f217edf6742ce75ab0d07f5d9b882e3625c13</citedby><cites>FETCH-LOGICAL-c465t-3d49281d74f59094f611c6f69ca7f217edf6742ce75ab0d07f5d9b882e3625c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19124465$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherrer, Shanen M.</creatorcontrib><creatorcontrib>Brown, Jessica A.</creatorcontrib><creatorcontrib>Pack, Lindsey R.</creatorcontrib><creatorcontrib>Jasti, Vijay P.</creatorcontrib><creatorcontrib>Fowler, Jason D.</creatorcontrib><creatorcontrib>Basu, Ashis K.</creatorcontrib><creatorcontrib>Suo, Zucai</creatorcontrib><title>Mechanistic Studies of the Bypass of a Bulky Single-base Lesion Catalyzed by a Y-family DNA Polymerase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>1-Nitropyrene, the most abundant nitro polycyclic aromatic hydrocarbon in diesel emissions, has been found to react with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). This bulky adduct has been shown to induce genetic mutations, which may implicate Y-family DNA polymerases in its bypass in vivo. To establish a kinetic mechanism for the bypass of such a prototype single-base lesion, we employed pre-steady-state kinetic methods to investigate individual nucleotide incorporations upstream, opposite, and downstream from a site-specifically placed dGAP lesion catalyzed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. Dpo4 was able to bypass dGAP but paused strongly at two sites: opposite the lesion and immediately downstream from the lesion. Both nucleotide incorporation efficiency and fidelity decreased significantly at the pause sites, especially during extension of the bypass product. Interestingly, a 4-fold tighter binding affinity of damaged DNA to Dpo4 promoted catalysis through putative interactions between the active site residues of Dpo4 and 1-aminopyrene moiety at the first pause site. In the presence of a DNA trap, the kinetics of nucleotide incorporation at these sites was biphasic in which a small, fast phase preceded a larger, slow phase. In contrast, only a large, fast phase was observed during nucleotide incorporation at non-pause sites. Our kinetic studies support a general kinetic mechanism for lesion bypass catalyzed by numerous DNA polymerases.</description><subject>1-Nitropyrene</subject><subject>Adducts</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Catalysis</subject><subject>Diesel</subject><subject>DNA Adducts - chemistry</subject><subject>DNA Adducts - genetics</subject><subject>DNA Adducts - metabolism</subject><subject>DNA Damage - physiology</subject><subject>DNA, Archaeal - chemistry</subject><subject>DNA, Archaeal - genetics</subject><subject>DNA, Archaeal - metabolism</subject><subject>DNA-directed DNA polymerase</subject><subject>DNA-Directed DNA Polymerase - chemistry</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>Fidelity</subject><subject>Kinetics</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Polycyclic aromatic hydrocarbons</subject><subject>Pyrenes - chemistry</subject><subject>Sulfolobus solfataricus</subject><subject>Sulfolobus solfataricus - enzymology</subject><subject>Sulfolobus solfataricus - genetics</subject><subject>Vehicle Emissions</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10M2L1DAYBvAgiju7evWoAcFbxyRt0-S4O37CrArjgp5CmryZZu3HbNKu1L_ejB3Yk7mEwC8PDw9CLyhZU1IVb29rs74WRFBOGSGP0IoSkWd5SX88RitCGM0kK8UZOo_xlqRTSPoUnVFJWVHwcoXcNZhG9z6O3uDdOFkPEQ8Ojw3gq_mg47-XxldT-2vGO9_vW8hqHQFvIfqhxxs96nb-AxbXc3I_M6c738743ZdL_G1o5w5C0s_QE6fbCM9P9wW6-fD---ZTtv368fPmcpuZ1GbMcltIJqitCldKIgvHKTXccWl05RitwDpeFcxAVeqaWFK50spaCAY5Z6Wh-QV6s-QewnA3QRxV56OBttU9DFNUjBLJGTnC9QJNGGIM4NQh-E6HWVGijsuqtKx6WDZ9eHlKnuoO7AM_TZnA6wU0ft_89gFU7QfTQKeYKI6pPK9kUq8W5fSg9D74qG52x0KEllJwKpIQi4C0072HoKLx0BuwKdOMyg7-fx3_AoBdmo4</recordid><startdate>20090306</startdate><enddate>20090306</enddate><creator>Sherrer, Shanen M.</creator><creator>Brown, Jessica A.</creator><creator>Pack, Lindsey R.</creator><creator>Jasti, Vijay P.</creator><creator>Fowler, Jason D.</creator><creator>Basu, Ashis K.</creator><creator>Suo, Zucai</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope></search><sort><creationdate>20090306</creationdate><title>Mechanistic Studies of the Bypass of a Bulky Single-base Lesion Catalyzed by a Y-family DNA Polymerase</title><author>Sherrer, Shanen M. ; Brown, Jessica A. ; Pack, Lindsey R. ; Jasti, Vijay P. ; Fowler, Jason D. ; Basu, Ashis K. ; Suo, Zucai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-3d49281d74f59094f611c6f69ca7f217edf6742ce75ab0d07f5d9b882e3625c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>1-Nitropyrene</topic><topic>Adducts</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Catalysis</topic><topic>Diesel</topic><topic>DNA Adducts - chemistry</topic><topic>DNA Adducts - genetics</topic><topic>DNA Adducts - metabolism</topic><topic>DNA Damage - physiology</topic><topic>DNA, Archaeal - chemistry</topic><topic>DNA, Archaeal - genetics</topic><topic>DNA, Archaeal - metabolism</topic><topic>DNA-directed DNA polymerase</topic><topic>DNA-Directed DNA Polymerase - chemistry</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>Fidelity</topic><topic>Kinetics</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Polycyclic aromatic hydrocarbons</topic><topic>Pyrenes - chemistry</topic><topic>Sulfolobus solfataricus</topic><topic>Sulfolobus solfataricus - enzymology</topic><topic>Sulfolobus solfataricus - genetics</topic><topic>Vehicle Emissions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherrer, Shanen M.</creatorcontrib><creatorcontrib>Brown, Jessica A.</creatorcontrib><creatorcontrib>Pack, Lindsey R.</creatorcontrib><creatorcontrib>Jasti, Vijay P.</creatorcontrib><creatorcontrib>Fowler, Jason D.</creatorcontrib><creatorcontrib>Basu, Ashis K.</creatorcontrib><creatorcontrib>Suo, Zucai</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherrer, Shanen M.</au><au>Brown, Jessica A.</au><au>Pack, Lindsey R.</au><au>Jasti, Vijay P.</au><au>Fowler, Jason D.</au><au>Basu, Ashis K.</au><au>Suo, Zucai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Studies of the Bypass of a Bulky Single-base Lesion Catalyzed by a Y-family DNA Polymerase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-03-06</date><risdate>2009</risdate><volume>284</volume><issue>10</issue><spage>6379</spage><epage>6388</epage><pages>6379-6388</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>1-Nitropyrene, the most abundant nitro polycyclic aromatic hydrocarbon in diesel emissions, has been found to react with DNA to form predominantly N-(deoxyguanosin-8-yl)-1-aminopyrene (dGAP). This bulky adduct has been shown to induce genetic mutations, which may implicate Y-family DNA polymerases in its bypass in vivo. To establish a kinetic mechanism for the bypass of such a prototype single-base lesion, we employed pre-steady-state kinetic methods to investigate individual nucleotide incorporations upstream, opposite, and downstream from a site-specifically placed dGAP lesion catalyzed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. Dpo4 was able to bypass dGAP but paused strongly at two sites: opposite the lesion and immediately downstream from the lesion. Both nucleotide incorporation efficiency and fidelity decreased significantly at the pause sites, especially during extension of the bypass product. Interestingly, a 4-fold tighter binding affinity of damaged DNA to Dpo4 promoted catalysis through putative interactions between the active site residues of Dpo4 and 1-aminopyrene moiety at the first pause site. In the presence of a DNA trap, the kinetics of nucleotide incorporation at these sites was biphasic in which a small, fast phase preceded a larger, slow phase. In contrast, only a large, fast phase was observed during nucleotide incorporation at non-pause sites. Our kinetic studies support a general kinetic mechanism for lesion bypass catalyzed by numerous DNA polymerases.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19124465</pmid><doi>10.1074/jbc.M808161200</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-03, Vol.284 (10), p.6379-6388
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_21096201
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects 1-Nitropyrene
Adducts
Archaeal Proteins - chemistry
Archaeal Proteins - genetics
Catalysis
Diesel
DNA Adducts - chemistry
DNA Adducts - genetics
DNA Adducts - metabolism
DNA Damage - physiology
DNA, Archaeal - chemistry
DNA, Archaeal - genetics
DNA, Archaeal - metabolism
DNA-directed DNA polymerase
DNA-Directed DNA Polymerase - chemistry
DNA-Directed DNA Polymerase - genetics
Fidelity
Kinetics
Mutation
Nucleotides
Polycyclic aromatic hydrocarbons
Pyrenes - chemistry
Sulfolobus solfataricus
Sulfolobus solfataricus - enzymology
Sulfolobus solfataricus - genetics
Vehicle Emissions
title Mechanistic Studies of the Bypass of a Bulky Single-base Lesion Catalyzed by a Y-family DNA Polymerase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A33%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Studies%20of%20the%20Bypass%20of%20a%20Bulky%20Single-base%20Lesion%20Catalyzed%20by%20a%20Y-family%20DNA%20Polymerase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Sherrer,%20Shanen%20M.&rft.date=2009-03-06&rft.volume=284&rft.issue=10&rft.spage=6379&rft.epage=6388&rft.pages=6379-6388&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M808161200&rft_dat=%3Cproquest_cross%3E21096201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21096201&rft_id=info:pmid/19124465&rft_els_id=S0021925820326661&rfr_iscdi=true