An Improved Goodness of Fit Statistic for Probability Prediction Models

We consider the general case of probability prediction models having two or more outcomes and propose an adjusted χ2 statistic which can be used to assess the goodness of fit of these models. We present a simulation study to show that our proposed statistic has an approximate χ2 distribution under t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 1999-03, Vol.41 (1), p.71-82
Hauptverfasser: Pigeon, Joseph G., Heyse, Joseph F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 82
container_issue 1
container_start_page 71
container_title Biometrical journal
container_volume 41
creator Pigeon, Joseph G.
Heyse, Joseph F.
description We consider the general case of probability prediction models having two or more outcomes and propose an adjusted χ2 statistic which can be used to assess the goodness of fit of these models. We present a simulation study to show that our proposed statistic has an approximate χ2 distribution under the null hypothesis. Two applications are provided to illustrate the use of the new statistic. The first application examines the fit of a logistic regression model using both the proposed statistic and the popular Hosmer‐Lemeshow statistic and we compare and contrast these two methods. The second application evaluates the goodness of fit of a polychotomous regression model.
doi_str_mv 10.1002/(SICI)1521-4036(199903)41:1<71::AID-BIMJ71>3.0.CO;2-O
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21092124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21092124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4091-beb0158a0f54ea5f0a5bb5042a5b576888b53c72e26b537b63a1c0e78dea32f23</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EEkvhP-SAUHvIMrbjOFk-pG2WboNaglRQexs5jiMZsnEbp8D-e7zKajkU9TQja_zMq2cI-UBhTgHY2-OrsihPqGA0ToCnxzTPc-AnCV3Q95IuFstyFZ-Wl58l_cjnMC-qdyyunpDZ4cdTMgPOeMyzRD4nL7z_AQA5JGxG1ss-Kje3g_tlmmjtXNMb7yPXRmd2jK5GNVo_Wh21boi-Dq5Wte3suA29aawereujS9eYzr8kz1rVefNqX4_I97NP34rz-KJal8XyItYJ5DSuTQ1UZApakRglWlCirkVIEqqQaZZlteBaMsPS0Mg65YpqMDJrjOKsZfyIvJm4IfLdvfEjbqzXputUb9y9R0YhZ5Ql_BBAD877wbR4O9iNGrZIAXdaEXdacScJd5Jw0ooJRYqSIgatOGlFjoBFhQyrwH29D6C8Vl07qF5b_w-ecS6kCGPX09hv25ntg92Pr_7v5v1LIMcTOVzG_DmQ1fATU8mlwOsvazzPxc1qdZNhwv8C5O2lxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21092124</pqid></control><display><type>article</type><title>An Improved Goodness of Fit Statistic for Probability Prediction Models</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Pigeon, Joseph G. ; Heyse, Joseph F.</creator><creatorcontrib>Pigeon, Joseph G. ; Heyse, Joseph F.</creatorcontrib><description>We consider the general case of probability prediction models having two or more outcomes and propose an adjusted χ2 statistic which can be used to assess the goodness of fit of these models. We present a simulation study to show that our proposed statistic has an approximate χ2 distribution under the null hypothesis. Two applications are provided to illustrate the use of the new statistic. The first application examines the fit of a logistic regression model using both the proposed statistic and the popular Hosmer‐Lemeshow statistic and we compare and contrast these two methods. The second application evaluates the goodness of fit of a polychotomous regression model.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/(SICI)1521-4036(199903)41:1&lt;71::AID-BIMJ71&gt;3.0.CO;2-O</identifier><identifier>CODEN: BIJODN</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag Berlin GmbH</publisher><subject>Exact sciences and technology ; Goodness of fit ; Inference from stochastic processes; time series analysis ; Linear inference, regression ; Logistic regression ; Mathematics ; Polychotomous regression ; Probability and statistics ; Probability prediction models ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistics ; Stochastic processes</subject><ispartof>Biometrical journal, 1999-03, Vol.41 (1), p.71-82</ispartof><rights>1999 WILEY‐VCH Verlag Berlin GmbH, Fed. Rep. of Germany</rights><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291521-4036%28199903%2941%3A1%3C71%3A%3AAID-BIMJ71%3E3.0.CO%3B2-O$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291521-4036%28199903%2941%3A1%3C71%3A%3AAID-BIMJ71%3E3.0.CO%3B2-O$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1833575$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pigeon, Joseph G.</creatorcontrib><creatorcontrib>Heyse, Joseph F.</creatorcontrib><title>An Improved Goodness of Fit Statistic for Probability Prediction Models</title><title>Biometrical journal</title><addtitle>Biom. J</addtitle><description>We consider the general case of probability prediction models having two or more outcomes and propose an adjusted χ2 statistic which can be used to assess the goodness of fit of these models. We present a simulation study to show that our proposed statistic has an approximate χ2 distribution under the null hypothesis. Two applications are provided to illustrate the use of the new statistic. The first application examines the fit of a logistic regression model using both the proposed statistic and the popular Hosmer‐Lemeshow statistic and we compare and contrast these two methods. The second application evaluates the goodness of fit of a polychotomous regression model.</description><subject>Exact sciences and technology</subject><subject>Goodness of fit</subject><subject>Inference from stochastic processes; time series analysis</subject><subject>Linear inference, regression</subject><subject>Logistic regression</subject><subject>Mathematics</subject><subject>Polychotomous regression</subject><subject>Probability and statistics</subject><subject>Probability prediction models</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Stochastic processes</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EEkvhP-SAUHvIMrbjOFk-pG2WboNaglRQexs5jiMZsnEbp8D-e7zKajkU9TQja_zMq2cI-UBhTgHY2-OrsihPqGA0ToCnxzTPc-AnCV3Q95IuFstyFZ-Wl58l_cjnMC-qdyyunpDZ4cdTMgPOeMyzRD4nL7z_AQA5JGxG1ss-Kje3g_tlmmjtXNMb7yPXRmd2jK5GNVo_Wh21boi-Dq5Wte3suA29aawereujS9eYzr8kz1rVefNqX4_I97NP34rz-KJal8XyItYJ5DSuTQ1UZApakRglWlCirkVIEqqQaZZlteBaMsPS0Mg65YpqMDJrjOKsZfyIvJm4IfLdvfEjbqzXputUb9y9R0YhZ5Ql_BBAD877wbR4O9iNGrZIAXdaEXdacScJd5Jw0ooJRYqSIgatOGlFjoBFhQyrwH29D6C8Vl07qF5b_w-ecS6kCGPX09hv25ntg92Pr_7v5v1LIMcTOVzG_DmQ1fATU8mlwOsvazzPxc1qdZNhwv8C5O2lxw</recordid><startdate>199903</startdate><enddate>199903</enddate><creator>Pigeon, Joseph G.</creator><creator>Heyse, Joseph F.</creator><general>WILEY-VCH Verlag Berlin GmbH</general><general>WILEY‐VCH Verlag Berlin GmbH</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>199903</creationdate><title>An Improved Goodness of Fit Statistic for Probability Prediction Models</title><author>Pigeon, Joseph G. ; Heyse, Joseph F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4091-beb0158a0f54ea5f0a5bb5042a5b576888b53c72e26b537b63a1c0e78dea32f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Exact sciences and technology</topic><topic>Goodness of fit</topic><topic>Inference from stochastic processes; time series analysis</topic><topic>Linear inference, regression</topic><topic>Logistic regression</topic><topic>Mathematics</topic><topic>Polychotomous regression</topic><topic>Probability and statistics</topic><topic>Probability prediction models</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pigeon, Joseph G.</creatorcontrib><creatorcontrib>Heyse, Joseph F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pigeon, Joseph G.</au><au>Heyse, Joseph F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Goodness of Fit Statistic for Probability Prediction Models</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom. J</addtitle><date>1999-03</date><risdate>1999</risdate><volume>41</volume><issue>1</issue><spage>71</spage><epage>82</epage><pages>71-82</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><coden>BIJODN</coden><abstract>We consider the general case of probability prediction models having two or more outcomes and propose an adjusted χ2 statistic which can be used to assess the goodness of fit of these models. We present a simulation study to show that our proposed statistic has an approximate χ2 distribution under the null hypothesis. Two applications are provided to illustrate the use of the new statistic. The first application examines the fit of a logistic regression model using both the proposed statistic and the popular Hosmer‐Lemeshow statistic and we compare and contrast these two methods. The second application evaluates the goodness of fit of a polychotomous regression model.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag Berlin GmbH</pub><doi>10.1002/(SICI)1521-4036(199903)41:1&lt;71::AID-BIMJ71&gt;3.0.CO;2-O</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 1999-03, Vol.41 (1), p.71-82
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_21092124
source Wiley Online Library Journals Frontfile Complete
subjects Exact sciences and technology
Goodness of fit
Inference from stochastic processes
time series analysis
Linear inference, regression
Logistic regression
Mathematics
Polychotomous regression
Probability and statistics
Probability prediction models
Probability theory and stochastic processes
Sciences and techniques of general use
Statistics
Stochastic processes
title An Improved Goodness of Fit Statistic for Probability Prediction Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Goodness%20of%20Fit%20Statistic%20for%20Probability%20Prediction%20Models&rft.jtitle=Biometrical%20journal&rft.au=Pigeon,%20Joseph%20G.&rft.date=1999-03&rft.volume=41&rft.issue=1&rft.spage=71&rft.epage=82&rft.pages=71-82&rft.issn=0323-3847&rft.eissn=1521-4036&rft.coden=BIJODN&rft_id=info:doi/10.1002/(SICI)1521-4036(199903)41:1%3C71::AID-BIMJ71%3E3.0.CO;2-O&rft_dat=%3Cproquest_cross%3E21092124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21092124&rft_id=info:pmid/&rfr_iscdi=true