On Exact Unconditional Test for Linear Trend in Dose-Response Studies
The one‐degree‐of‐freedom Cochran‐Armitage (C‐A) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies,...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 2000-11, Vol.42 (7), p.795-806 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 806 |
---|---|
container_issue | 7 |
container_start_page | 795 |
container_title | Biometrical journal |
container_volume | 42 |
creator | Tang, Man-Lai Chan, Ping-Shing Chan, Wai |
description | The one‐degree‐of‐freedom Cochran‐Armitage (C‐A) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies, however, on asymptotic theory that is reliable only when the sample sizes are reasonably large and well balanced across dose levels. For small, sparse, or skewed data, the asymptotic theory is suspect and exact conditional method (based on the C‐A statistic) seems to provide a dependable alternative. Unfortunately, the exact conditional method is only practical for the linear logistic model from which the sufficient statistics for the regression coefficients can be obtained explicitly. In this article, a simple and efficient recursive polynomial multiplication algorithm for exact unconditional test (based on the C‐A statistic) for detecting a linear trend in proportions is derived. The method is applicable for all choices of the model with monotone trend including logistic, probit, arcsine, extreme value and one hit. We also show that this algorithm can be easily extended to exact unconditional power calculation for studies with up to a moderately large sample size. A real example is given to illustrate the applicability of the proposed method. |
doi_str_mv | 10.1002/1521-4036(200011)42:7<795::AID-BIMJ795>3.0.CO;2-G |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21075121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21075121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4025-8b70b1173ff071b74d0429c0eef7002cc114aca33bfe204e11a59f44777a12e53</originalsourceid><addsrcrecordid>eNqVkMFuEzEQhi0EEqHwDpaQEBycemxvnA0IqSRpCEqJKClwGzmOLZluvcHeiPbtcZSQExdO1lgz3z_zEVID7wPn4hwqAUxxOXgtOOcAb5QY6Xe6rkaji_mEfZhffSrFe9nn_fHyrWCzR6R3mnlMelwKyeRQ6afkWc4_C6PmSvTIdBnp9N7Yjt5E28ZN6EIbTUNXLnfUt4kuQnQm0VVycUNDpJM2O3bt8raN2dGv3W4TXH5OnnjTZPfi-J6Rm8vpavyRLZaz-fhiwaziomLDteZrAC295xrWWm3KDrXlznldjrQWQBlrpFx7J7hyAKaqvVJaawPCVfKMvDpwt6n9tSsr4l3I1jWNia7dZRTAdQUCSuOXQ6NNbc7JedymcGfSAwLHvVDcy8G9HDwIRSVQY3GIWITiUShK5DheosBZYb48hptsTeOTiTbkE3gICup98vH036FxD_8R--_Uv1-Fyw7ckDt3f-KadIsDLXWF3z_PsJ78qAerb9d4Jf8Aukeglg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21075121</pqid></control><display><type>article</type><title>On Exact Unconditional Test for Linear Trend in Dose-Response Studies</title><source>Wiley Journals</source><creator>Tang, Man-Lai ; Chan, Ping-Shing ; Chan, Wai</creator><creatorcontrib>Tang, Man-Lai ; Chan, Ping-Shing ; Chan, Wai</creatorcontrib><description>The one‐degree‐of‐freedom Cochran‐Armitage (C‐A) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies, however, on asymptotic theory that is reliable only when the sample sizes are reasonably large and well balanced across dose levels. For small, sparse, or skewed data, the asymptotic theory is suspect and exact conditional method (based on the C‐A statistic) seems to provide a dependable alternative. Unfortunately, the exact conditional method is only practical for the linear logistic model from which the sufficient statistics for the regression coefficients can be obtained explicitly. In this article, a simple and efficient recursive polynomial multiplication algorithm for exact unconditional test (based on the C‐A statistic) for detecting a linear trend in proportions is derived. The method is applicable for all choices of the model with monotone trend including logistic, probit, arcsine, extreme value and one hit. We also show that this algorithm can be easily extended to exact unconditional power calculation for studies with up to a moderately large sample size. A real example is given to illustrate the applicability of the proposed method.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/1521-4036(200011)42:7<795::AID-BIMJ795>3.0.CO;2-G</identifier><identifier>CODEN: BIJODN</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag Berlin GmbH</publisher><subject>Distribution theory ; Dose-response data ; Exact power ; Exact sciences and technology ; Exact unconditional test ; Linear inference, regression ; Mathematics ; Nonparametric inference ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Sufficiency and information</subject><ispartof>Biometrical journal, 2000-11, Vol.42 (7), p.795-806</ispartof><rights>2000 WILEY‐VCH Verlag Berlin GmbH, Fed. Rep. of Germany</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4025-8b70b1173ff071b74d0429c0eef7002cc114aca33bfe204e11a59f44777a12e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1521-4036%28200011%2942%3A7%3C795%3A%3AAID-BIMJ795%3E3.0.CO%3B2-G$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1521-4036%28200011%2942%3A7%3C795%3A%3AAID-BIMJ795%3E3.0.CO%3B2-G$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=814191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Man-Lai</creatorcontrib><creatorcontrib>Chan, Ping-Shing</creatorcontrib><creatorcontrib>Chan, Wai</creatorcontrib><title>On Exact Unconditional Test for Linear Trend in Dose-Response Studies</title><title>Biometrical journal</title><addtitle>Biom. J</addtitle><description>The one‐degree‐of‐freedom Cochran‐Armitage (C‐A) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies, however, on asymptotic theory that is reliable only when the sample sizes are reasonably large and well balanced across dose levels. For small, sparse, or skewed data, the asymptotic theory is suspect and exact conditional method (based on the C‐A statistic) seems to provide a dependable alternative. Unfortunately, the exact conditional method is only practical for the linear logistic model from which the sufficient statistics for the regression coefficients can be obtained explicitly. In this article, a simple and efficient recursive polynomial multiplication algorithm for exact unconditional test (based on the C‐A statistic) for detecting a linear trend in proportions is derived. The method is applicable for all choices of the model with monotone trend including logistic, probit, arcsine, extreme value and one hit. We also show that this algorithm can be easily extended to exact unconditional power calculation for studies with up to a moderately large sample size. A real example is given to illustrate the applicability of the proposed method.</description><subject>Distribution theory</subject><subject>Dose-response data</subject><subject>Exact power</subject><subject>Exact sciences and technology</subject><subject>Exact unconditional test</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Sufficiency and information</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkMFuEzEQhi0EEqHwDpaQEBycemxvnA0IqSRpCEqJKClwGzmOLZluvcHeiPbtcZSQExdO1lgz3z_zEVID7wPn4hwqAUxxOXgtOOcAb5QY6Xe6rkaji_mEfZhffSrFe9nn_fHyrWCzR6R3mnlMelwKyeRQ6afkWc4_C6PmSvTIdBnp9N7Yjt5E28ZN6EIbTUNXLnfUt4kuQnQm0VVycUNDpJM2O3bt8raN2dGv3W4TXH5OnnjTZPfi-J6Rm8vpavyRLZaz-fhiwaziomLDteZrAC295xrWWm3KDrXlznldjrQWQBlrpFx7J7hyAKaqvVJaawPCVfKMvDpwt6n9tSsr4l3I1jWNia7dZRTAdQUCSuOXQ6NNbc7JedymcGfSAwLHvVDcy8G9HDwIRSVQY3GIWITiUShK5DheosBZYb48hptsTeOTiTbkE3gICup98vH036FxD_8R--_Uv1-Fyw7ckDt3f-KadIsDLXWF3z_PsJ78qAerb9d4Jf8Aukeglg</recordid><startdate>200011</startdate><enddate>200011</enddate><creator>Tang, Man-Lai</creator><creator>Chan, Ping-Shing</creator><creator>Chan, Wai</creator><general>WILEY-VCH Verlag Berlin GmbH</general><general>WILEY‐VCH Verlag Berlin GmbH</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200011</creationdate><title>On Exact Unconditional Test for Linear Trend in Dose-Response Studies</title><author>Tang, Man-Lai ; Chan, Ping-Shing ; Chan, Wai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4025-8b70b1173ff071b74d0429c0eef7002cc114aca33bfe204e11a59f44777a12e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Distribution theory</topic><topic>Dose-response data</topic><topic>Exact power</topic><topic>Exact sciences and technology</topic><topic>Exact unconditional test</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Sufficiency and information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Man-Lai</creatorcontrib><creatorcontrib>Chan, Ping-Shing</creatorcontrib><creatorcontrib>Chan, Wai</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Man-Lai</au><au>Chan, Ping-Shing</au><au>Chan, Wai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Exact Unconditional Test for Linear Trend in Dose-Response Studies</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom. J</addtitle><date>2000-11</date><risdate>2000</risdate><volume>42</volume><issue>7</issue><spage>795</spage><epage>806</epage><pages>795-806</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><coden>BIJODN</coden><abstract>The one‐degree‐of‐freedom Cochran‐Armitage (C‐A) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies, however, on asymptotic theory that is reliable only when the sample sizes are reasonably large and well balanced across dose levels. For small, sparse, or skewed data, the asymptotic theory is suspect and exact conditional method (based on the C‐A statistic) seems to provide a dependable alternative. Unfortunately, the exact conditional method is only practical for the linear logistic model from which the sufficient statistics for the regression coefficients can be obtained explicitly. In this article, a simple and efficient recursive polynomial multiplication algorithm for exact unconditional test (based on the C‐A statistic) for detecting a linear trend in proportions is derived. The method is applicable for all choices of the model with monotone trend including logistic, probit, arcsine, extreme value and one hit. We also show that this algorithm can be easily extended to exact unconditional power calculation for studies with up to a moderately large sample size. A real example is given to illustrate the applicability of the proposed method.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag Berlin GmbH</pub><doi>10.1002/1521-4036(200011)42:7<795::AID-BIMJ795>3.0.CO;2-G</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 2000-11, Vol.42 (7), p.795-806 |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_proquest_miscellaneous_21075121 |
source | Wiley Journals |
subjects | Distribution theory Dose-response data Exact power Exact sciences and technology Exact unconditional test Linear inference, regression Mathematics Nonparametric inference Probability and statistics Sciences and techniques of general use Statistics Sufficiency and information |
title | On Exact Unconditional Test for Linear Trend in Dose-Response Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Exact%20Unconditional%20Test%20for%20Linear%20Trend%20in%20Dose-Response%20Studies&rft.jtitle=Biometrical%20journal&rft.au=Tang,%20Man-Lai&rft.date=2000-11&rft.volume=42&rft.issue=7&rft.spage=795&rft.epage=806&rft.pages=795-806&rft.issn=0323-3847&rft.eissn=1521-4036&rft.coden=BIJODN&rft_id=info:doi/10.1002/1521-4036(200011)42:7%3C795::AID-BIMJ795%3E3.0.CO;2-G&rft_dat=%3Cproquest_cross%3E21075121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21075121&rft_id=info:pmid/&rfr_iscdi=true |