On Exact Unconditional Test for Linear Trend in Dose-Response Studies

The one‐degree‐of‐freedom Cochran‐Armitage (C‐A) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2000-11, Vol.42 (7), p.795-806
Hauptverfasser: Tang, Man-Lai, Chan, Ping-Shing, Chan, Wai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue 7
container_start_page 795
container_title Biometrical journal
container_volume 42
creator Tang, Man-Lai
Chan, Ping-Shing
Chan, Wai
description The one‐degree‐of‐freedom Cochran‐Armitage (C‐A) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies, however, on asymptotic theory that is reliable only when the sample sizes are reasonably large and well balanced across dose levels. For small, sparse, or skewed data, the asymptotic theory is suspect and exact conditional method (based on the C‐A statistic) seems to provide a dependable alternative. Unfortunately, the exact conditional method is only practical for the linear logistic model from which the sufficient statistics for the regression coefficients can be obtained explicitly. In this article, a simple and efficient recursive polynomial multiplication algorithm for exact unconditional test (based on the C‐A statistic) for detecting a linear trend in proportions is derived. The method is applicable for all choices of the model with monotone trend including logistic, probit, arcsine, extreme value and one hit. We also show that this algorithm can be easily extended to exact unconditional power calculation for studies with up to a moderately large sample size. A real example is given to illustrate the applicability of the proposed method.
doi_str_mv 10.1002/1521-4036(200011)42:7<795::AID-BIMJ795>3.0.CO;2-G
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21075121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21075121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4025-8b70b1173ff071b74d0429c0eef7002cc114aca33bfe204e11a59f44777a12e53</originalsourceid><addsrcrecordid>eNqVkMFuEzEQhi0EEqHwDpaQEBycemxvnA0IqSRpCEqJKClwGzmOLZluvcHeiPbtcZSQExdO1lgz3z_zEVID7wPn4hwqAUxxOXgtOOcAb5QY6Xe6rkaji_mEfZhffSrFe9nn_fHyrWCzR6R3mnlMelwKyeRQ6afkWc4_C6PmSvTIdBnp9N7Yjt5E28ZN6EIbTUNXLnfUt4kuQnQm0VVycUNDpJM2O3bt8raN2dGv3W4TXH5OnnjTZPfi-J6Rm8vpavyRLZaz-fhiwaziomLDteZrAC295xrWWm3KDrXlznldjrQWQBlrpFx7J7hyAKaqvVJaawPCVfKMvDpwt6n9tSsr4l3I1jWNia7dZRTAdQUCSuOXQ6NNbc7JedymcGfSAwLHvVDcy8G9HDwIRSVQY3GIWITiUShK5DheosBZYb48hptsTeOTiTbkE3gICup98vH036FxD_8R--_Uv1-Fyw7ckDt3f-KadIsDLXWF3z_PsJ78qAerb9d4Jf8Aukeglg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21075121</pqid></control><display><type>article</type><title>On Exact Unconditional Test for Linear Trend in Dose-Response Studies</title><source>Wiley Journals</source><creator>Tang, Man-Lai ; Chan, Ping-Shing ; Chan, Wai</creator><creatorcontrib>Tang, Man-Lai ; Chan, Ping-Shing ; Chan, Wai</creatorcontrib><description>The one‐degree‐of‐freedom Cochran‐Armitage (C‐A) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies, however, on asymptotic theory that is reliable only when the sample sizes are reasonably large and well balanced across dose levels. For small, sparse, or skewed data, the asymptotic theory is suspect and exact conditional method (based on the C‐A statistic) seems to provide a dependable alternative. Unfortunately, the exact conditional method is only practical for the linear logistic model from which the sufficient statistics for the regression coefficients can be obtained explicitly. In this article, a simple and efficient recursive polynomial multiplication algorithm for exact unconditional test (based on the C‐A statistic) for detecting a linear trend in proportions is derived. The method is applicable for all choices of the model with monotone trend including logistic, probit, arcsine, extreme value and one hit. We also show that this algorithm can be easily extended to exact unconditional power calculation for studies with up to a moderately large sample size. A real example is given to illustrate the applicability of the proposed method.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/1521-4036(200011)42:7&lt;795::AID-BIMJ795&gt;3.0.CO;2-G</identifier><identifier>CODEN: BIJODN</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag Berlin GmbH</publisher><subject>Distribution theory ; Dose-response data ; Exact power ; Exact sciences and technology ; Exact unconditional test ; Linear inference, regression ; Mathematics ; Nonparametric inference ; Probability and statistics ; Sciences and techniques of general use ; Statistics ; Sufficiency and information</subject><ispartof>Biometrical journal, 2000-11, Vol.42 (7), p.795-806</ispartof><rights>2000 WILEY‐VCH Verlag Berlin GmbH, Fed. Rep. of Germany</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4025-8b70b1173ff071b74d0429c0eef7002cc114aca33bfe204e11a59f44777a12e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1521-4036%28200011%2942%3A7%3C795%3A%3AAID-BIMJ795%3E3.0.CO%3B2-G$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1521-4036%28200011%2942%3A7%3C795%3A%3AAID-BIMJ795%3E3.0.CO%3B2-G$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=814191$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Man-Lai</creatorcontrib><creatorcontrib>Chan, Ping-Shing</creatorcontrib><creatorcontrib>Chan, Wai</creatorcontrib><title>On Exact Unconditional Test for Linear Trend in Dose-Response Studies</title><title>Biometrical journal</title><addtitle>Biom. J</addtitle><description>The one‐degree‐of‐freedom Cochran‐Armitage (C‐A) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies, however, on asymptotic theory that is reliable only when the sample sizes are reasonably large and well balanced across dose levels. For small, sparse, or skewed data, the asymptotic theory is suspect and exact conditional method (based on the C‐A statistic) seems to provide a dependable alternative. Unfortunately, the exact conditional method is only practical for the linear logistic model from which the sufficient statistics for the regression coefficients can be obtained explicitly. In this article, a simple and efficient recursive polynomial multiplication algorithm for exact unconditional test (based on the C‐A statistic) for detecting a linear trend in proportions is derived. The method is applicable for all choices of the model with monotone trend including logistic, probit, arcsine, extreme value and one hit. We also show that this algorithm can be easily extended to exact unconditional power calculation for studies with up to a moderately large sample size. A real example is given to illustrate the applicability of the proposed method.</description><subject>Distribution theory</subject><subject>Dose-response data</subject><subject>Exact power</subject><subject>Exact sciences and technology</subject><subject>Exact unconditional test</subject><subject>Linear inference, regression</subject><subject>Mathematics</subject><subject>Nonparametric inference</subject><subject>Probability and statistics</subject><subject>Sciences and techniques of general use</subject><subject>Statistics</subject><subject>Sufficiency and information</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqVkMFuEzEQhi0EEqHwDpaQEBycemxvnA0IqSRpCEqJKClwGzmOLZluvcHeiPbtcZSQExdO1lgz3z_zEVID7wPn4hwqAUxxOXgtOOcAb5QY6Xe6rkaji_mEfZhffSrFe9nn_fHyrWCzR6R3mnlMelwKyeRQ6afkWc4_C6PmSvTIdBnp9N7Yjt5E28ZN6EIbTUNXLnfUt4kuQnQm0VVycUNDpJM2O3bt8raN2dGv3W4TXH5OnnjTZPfi-J6Rm8vpavyRLZaz-fhiwaziomLDteZrAC295xrWWm3KDrXlznldjrQWQBlrpFx7J7hyAKaqvVJaawPCVfKMvDpwt6n9tSsr4l3I1jWNia7dZRTAdQUCSuOXQ6NNbc7JedymcGfSAwLHvVDcy8G9HDwIRSVQY3GIWITiUShK5DheosBZYb48hptsTeOTiTbkE3gICup98vH036FxD_8R--_Uv1-Fyw7ckDt3f-KadIsDLXWF3z_PsJ78qAerb9d4Jf8Aukeglg</recordid><startdate>200011</startdate><enddate>200011</enddate><creator>Tang, Man-Lai</creator><creator>Chan, Ping-Shing</creator><creator>Chan, Wai</creator><general>WILEY-VCH Verlag Berlin GmbH</general><general>WILEY‐VCH Verlag Berlin GmbH</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>200011</creationdate><title>On Exact Unconditional Test for Linear Trend in Dose-Response Studies</title><author>Tang, Man-Lai ; Chan, Ping-Shing ; Chan, Wai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4025-8b70b1173ff071b74d0429c0eef7002cc114aca33bfe204e11a59f44777a12e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Distribution theory</topic><topic>Dose-response data</topic><topic>Exact power</topic><topic>Exact sciences and technology</topic><topic>Exact unconditional test</topic><topic>Linear inference, regression</topic><topic>Mathematics</topic><topic>Nonparametric inference</topic><topic>Probability and statistics</topic><topic>Sciences and techniques of general use</topic><topic>Statistics</topic><topic>Sufficiency and information</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Man-Lai</creatorcontrib><creatorcontrib>Chan, Ping-Shing</creatorcontrib><creatorcontrib>Chan, Wai</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Man-Lai</au><au>Chan, Ping-Shing</au><au>Chan, Wai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Exact Unconditional Test for Linear Trend in Dose-Response Studies</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom. J</addtitle><date>2000-11</date><risdate>2000</risdate><volume>42</volume><issue>7</issue><spage>795</spage><epage>806</epage><pages>795-806</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><coden>BIJODN</coden><abstract>The one‐degree‐of‐freedom Cochran‐Armitage (C‐A) test statistic for linear trend has been widely applied in various dose‐response studies (e.g., anti‐ulcer medications and short‐term antibiotics, animal carcinogenicity bioassays and occupational toxicant studies). This approximate statistic relies, however, on asymptotic theory that is reliable only when the sample sizes are reasonably large and well balanced across dose levels. For small, sparse, or skewed data, the asymptotic theory is suspect and exact conditional method (based on the C‐A statistic) seems to provide a dependable alternative. Unfortunately, the exact conditional method is only practical for the linear logistic model from which the sufficient statistics for the regression coefficients can be obtained explicitly. In this article, a simple and efficient recursive polynomial multiplication algorithm for exact unconditional test (based on the C‐A statistic) for detecting a linear trend in proportions is derived. The method is applicable for all choices of the model with monotone trend including logistic, probit, arcsine, extreme value and one hit. We also show that this algorithm can be easily extended to exact unconditional power calculation for studies with up to a moderately large sample size. A real example is given to illustrate the applicability of the proposed method.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag Berlin GmbH</pub><doi>10.1002/1521-4036(200011)42:7&lt;795::AID-BIMJ795&gt;3.0.CO;2-G</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2000-11, Vol.42 (7), p.795-806
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_21075121
source Wiley Journals
subjects Distribution theory
Dose-response data
Exact power
Exact sciences and technology
Exact unconditional test
Linear inference, regression
Mathematics
Nonparametric inference
Probability and statistics
Sciences and techniques of general use
Statistics
Sufficiency and information
title On Exact Unconditional Test for Linear Trend in Dose-Response Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Exact%20Unconditional%20Test%20for%20Linear%20Trend%20in%20Dose-Response%20Studies&rft.jtitle=Biometrical%20journal&rft.au=Tang,%20Man-Lai&rft.date=2000-11&rft.volume=42&rft.issue=7&rft.spage=795&rft.epage=806&rft.pages=795-806&rft.issn=0323-3847&rft.eissn=1521-4036&rft.coden=BIJODN&rft_id=info:doi/10.1002/1521-4036(200011)42:7%3C795::AID-BIMJ795%3E3.0.CO;2-G&rft_dat=%3Cproquest_cross%3E21075121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21075121&rft_id=info:pmid/&rfr_iscdi=true