Genes within Genes: Multiple LAGLIDADG Homing Endonucleases Target the Ribosomal Protein S3 Gene Encoded within an rnl Group I Intron of Ophiostoma and Related Taxa

In some ascomycete fungi, ribosomal protein S3 (Rps3) is encoded within a group I intron (mL2449) that is inserted in the U11 region of the mitochondrial large subunit rDNA (rnl) gene. Previous characterization of the mL2449 intron in strains of Ophiostoma novo-ulmi subspecies americana (Dutch Elm D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology and evolution 2009-10, Vol.26 (10), p.2299-2315
Hauptverfasser: Sethuraman, J., Majer, A., Friedrich, N. C., Edgell, D. R., Hausner, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2315
container_issue 10
container_start_page 2299
container_title Molecular biology and evolution
container_volume 26
creator Sethuraman, J.
Majer, A.
Friedrich, N. C.
Edgell, D. R.
Hausner, G.
description In some ascomycete fungi, ribosomal protein S3 (Rps3) is encoded within a group I intron (mL2449) that is inserted in the U11 region of the mitochondrial large subunit rDNA (rnl) gene. Previous characterization of the mL2449 intron in strains of Ophiostoma novo-ulmi subspecies americana (Dutch Elm Disease) revealed a complex genes-within-genes arrangement whereby a LAGLIDADG homing endonuclease gene (HEG) is inserted into the RPS3 gene near the 3′ terminus, creating a hybrid Rps3-LAGLIDADG fusion protein. Here, we examined 119 additional strains of Ophiostoma and related taxa representing 85 different species by a polymerase chain reaction- based survey and detected both short (∼1.6 kb) and long (>2.2 kb) versions of the mL2449 intron in 88 and 31 strains, respectively. Among the long versions encountered, 21 were sequenced, revealing the presence of either intact or degenerated HEG-coding regions inserted within the RPS3 gene. Surprisingly, we identified two new HEG insertion sites in RPS3; one near the original C-terminal insertion site and one near the N-terminus of RPS3. In all instances, the HEGs are fused in-frame with the RPS3-coding sequences to create fusion proteins. However, comparative sequence analysis showed that upon insertion, the HEGs displaced a portion of the RPS3-coding region. Remarkably, the displaced RPS3-coding segments are duplicated and fused in-frame to the 3′ end of RPS3, restoring a full-length RPS3 gene. We cloned and expressed the LAGLIDADG portion of two Rps3-HEG fusions, and showed that I-OnuI and I-LtrI generate 4 nucleotide (nt), 3′ overhangs, and cleave at or 1 nt upstream of the HEG insertion site, respectively. Collectively, our data indicate that RPS3 genes are a refuge for distinct types of LAGLIDADG HEGs that are defined by the presence of duplicated segments of the host gene that restore the RPS3 gene, thus minimizing the impact of the HEG insertion on Rps3 function.
doi_str_mv 10.1093/molbev/msp145
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_21072049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msp145</oup_id><sourcerecordid>21072049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-5ea5d0051b805751447ad40481a08b09803314dde035cb012a5558cc382b29b13</originalsourceid><addsrcrecordid>eNqFkc1u1DAURi0EokNhyRZZLBCbtNexPUnYjdqSjjRVURnWkRPf6aRy7NR2-HkfHhS3GYTEpivb0vmOr_0R8pbBCYOKnw7OtPj9dAgjE_IZWTDJi4wVrHpOFlCkvQBeHpFXIdwBMCGWy5fkiFWyKtiSL8jvGi0G-qOP-97Sx8MnejWZ2I8G6WZVb9bnq_OaXrqht7f0wmpnp86gCim1Vf4WI417pDd964IblKFfvIuYXF_5oy5FOqdR_71CWeqtobV300jXdG2jd5a6Hb0e970LMTkSo-kNGhVTbKt-qtfkxU6ZgG8O6zH59vlie3aZba7r9dlqk3UiZzGTqKQGkKwtQRYyPbZQWoAomYKyhaoEzpnQGoHLrgWWKyll2XW8zNu8ahk_Jh9m7-jd_YQhNkMfOjRGWXRTaHIGRQ6iSuD7_8A7N3mbZmtynpeCF7JMUDZDnXcheNw1o-8H5X81DJqH7pq5u2buLvHvDtKpHVD_ow9lJeDjDKSve8L1B8JMo9Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232843758</pqid></control><display><type>article</type><title>Genes within Genes: Multiple LAGLIDADG Homing Endonucleases Target the Ribosomal Protein S3 Gene Encoded within an rnl Group I Intron of Ophiostoma and Related Taxa</title><source>Oxford Academic Journals (Open Access)</source><creator>Sethuraman, J. ; Majer, A. ; Friedrich, N. C. ; Edgell, D. R. ; Hausner, G.</creator><creatorcontrib>Sethuraman, J. ; Majer, A. ; Friedrich, N. C. ; Edgell, D. R. ; Hausner, G.</creatorcontrib><description>In some ascomycete fungi, ribosomal protein S3 (Rps3) is encoded within a group I intron (mL2449) that is inserted in the U11 region of the mitochondrial large subunit rDNA (rnl) gene. Previous characterization of the mL2449 intron in strains of Ophiostoma novo-ulmi subspecies americana (Dutch Elm Disease) revealed a complex genes-within-genes arrangement whereby a LAGLIDADG homing endonuclease gene (HEG) is inserted into the RPS3 gene near the 3′ terminus, creating a hybrid Rps3-LAGLIDADG fusion protein. Here, we examined 119 additional strains of Ophiostoma and related taxa representing 85 different species by a polymerase chain reaction- based survey and detected both short (∼1.6 kb) and long (&gt;2.2 kb) versions of the mL2449 intron in 88 and 31 strains, respectively. Among the long versions encountered, 21 were sequenced, revealing the presence of either intact or degenerated HEG-coding regions inserted within the RPS3 gene. Surprisingly, we identified two new HEG insertion sites in RPS3; one near the original C-terminal insertion site and one near the N-terminus of RPS3. In all instances, the HEGs are fused in-frame with the RPS3-coding sequences to create fusion proteins. However, comparative sequence analysis showed that upon insertion, the HEGs displaced a portion of the RPS3-coding region. Remarkably, the displaced RPS3-coding segments are duplicated and fused in-frame to the 3′ end of RPS3, restoring a full-length RPS3 gene. We cloned and expressed the LAGLIDADG portion of two Rps3-HEG fusions, and showed that I-OnuI and I-LtrI generate 4 nucleotide (nt), 3′ overhangs, and cleave at or 1 nt upstream of the HEG insertion site, respectively. Collectively, our data indicate that RPS3 genes are a refuge for distinct types of LAGLIDADG HEGs that are defined by the presence of duplicated segments of the host gene that restore the RPS3 gene, thus minimizing the impact of the HEG insertion on Rps3 function.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msp145</identifier><identifier>PMID: 19597163</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Ascomycetes ; Base Sequence ; Data processing ; Dutch elm disease ; Endonucleases - chemistry ; Endonucleases - genetics ; Endonucleases - isolation &amp; purification ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - isolation &amp; purification ; Fungi ; Fusion protein ; Genes, Fungal ; homing endonuclease ; Hybrids ; Inheritance Patterns - genetics ; Introns ; Introns - genetics ; Mitochondria ; Mitochondrial DNA ; Molecular biology ; Molecular Sequence Data ; Mutagenesis, Insertional ; N-Terminus ; Nucleotides ; Open Reading Frames - genetics ; Ophiostoma ; Ophiostoma - classification ; Ophiostoma - enzymology ; Ophiostoma - genetics ; Ophiostoma novo-ulmi ; Phylogeny ; Plant pathology ; Polymerase Chain Reaction ; Proteins ; ribosomal protein S3 ; Ribosomal Proteins - genetics ; Ribosome Subunits, Large - genetics ; rps3 gene ; Taxa</subject><ispartof>Molecular biology and evolution, 2009-10, Vol.26 (10), p.2299-2315</ispartof><rights>The Author 2009. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2009</rights><rights>The Author 2009. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-5ea5d0051b805751447ad40481a08b09803314dde035cb012a5558cc382b29b13</citedby><cites>FETCH-LOGICAL-c421t-5ea5d0051b805751447ad40481a08b09803314dde035cb012a5558cc382b29b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27903,27904</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/molbev/msp145$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19597163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sethuraman, J.</creatorcontrib><creatorcontrib>Majer, A.</creatorcontrib><creatorcontrib>Friedrich, N. C.</creatorcontrib><creatorcontrib>Edgell, D. R.</creatorcontrib><creatorcontrib>Hausner, G.</creatorcontrib><title>Genes within Genes: Multiple LAGLIDADG Homing Endonucleases Target the Ribosomal Protein S3 Gene Encoded within an rnl Group I Intron of Ophiostoma and Related Taxa</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>In some ascomycete fungi, ribosomal protein S3 (Rps3) is encoded within a group I intron (mL2449) that is inserted in the U11 region of the mitochondrial large subunit rDNA (rnl) gene. Previous characterization of the mL2449 intron in strains of Ophiostoma novo-ulmi subspecies americana (Dutch Elm Disease) revealed a complex genes-within-genes arrangement whereby a LAGLIDADG homing endonuclease gene (HEG) is inserted into the RPS3 gene near the 3′ terminus, creating a hybrid Rps3-LAGLIDADG fusion protein. Here, we examined 119 additional strains of Ophiostoma and related taxa representing 85 different species by a polymerase chain reaction- based survey and detected both short (∼1.6 kb) and long (&gt;2.2 kb) versions of the mL2449 intron in 88 and 31 strains, respectively. Among the long versions encountered, 21 were sequenced, revealing the presence of either intact or degenerated HEG-coding regions inserted within the RPS3 gene. Surprisingly, we identified two new HEG insertion sites in RPS3; one near the original C-terminal insertion site and one near the N-terminus of RPS3. In all instances, the HEGs are fused in-frame with the RPS3-coding sequences to create fusion proteins. However, comparative sequence analysis showed that upon insertion, the HEGs displaced a portion of the RPS3-coding region. Remarkably, the displaced RPS3-coding segments are duplicated and fused in-frame to the 3′ end of RPS3, restoring a full-length RPS3 gene. We cloned and expressed the LAGLIDADG portion of two Rps3-HEG fusions, and showed that I-OnuI and I-LtrI generate 4 nucleotide (nt), 3′ overhangs, and cleave at or 1 nt upstream of the HEG insertion site, respectively. Collectively, our data indicate that RPS3 genes are a refuge for distinct types of LAGLIDADG HEGs that are defined by the presence of duplicated segments of the host gene that restore the RPS3 gene, thus minimizing the impact of the HEG insertion on Rps3 function.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Ascomycetes</subject><subject>Base Sequence</subject><subject>Data processing</subject><subject>Dutch elm disease</subject><subject>Endonucleases - chemistry</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - isolation &amp; purification</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - isolation &amp; purification</subject><subject>Fungi</subject><subject>Fusion protein</subject><subject>Genes, Fungal</subject><subject>homing endonuclease</subject><subject>Hybrids</subject><subject>Inheritance Patterns - genetics</subject><subject>Introns</subject><subject>Introns - genetics</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Insertional</subject><subject>N-Terminus</subject><subject>Nucleotides</subject><subject>Open Reading Frames - genetics</subject><subject>Ophiostoma</subject><subject>Ophiostoma - classification</subject><subject>Ophiostoma - enzymology</subject><subject>Ophiostoma - genetics</subject><subject>Ophiostoma novo-ulmi</subject><subject>Phylogeny</subject><subject>Plant pathology</subject><subject>Polymerase Chain Reaction</subject><subject>Proteins</subject><subject>ribosomal protein S3</subject><subject>Ribosomal Proteins - genetics</subject><subject>Ribosome Subunits, Large - genetics</subject><subject>rps3 gene</subject><subject>Taxa</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1u1DAURi0EokNhyRZZLBCbtNexPUnYjdqSjjRVURnWkRPf6aRy7NR2-HkfHhS3GYTEpivb0vmOr_0R8pbBCYOKnw7OtPj9dAgjE_IZWTDJi4wVrHpOFlCkvQBeHpFXIdwBMCGWy5fkiFWyKtiSL8jvGi0G-qOP-97Sx8MnejWZ2I8G6WZVb9bnq_OaXrqht7f0wmpnp86gCim1Vf4WI417pDd964IblKFfvIuYXF_5oy5FOqdR_71CWeqtobV300jXdG2jd5a6Hb0e970LMTkSo-kNGhVTbKt-qtfkxU6ZgG8O6zH59vlie3aZba7r9dlqk3UiZzGTqKQGkKwtQRYyPbZQWoAomYKyhaoEzpnQGoHLrgWWKyll2XW8zNu8ahk_Jh9m7-jd_YQhNkMfOjRGWXRTaHIGRQ6iSuD7_8A7N3mbZmtynpeCF7JMUDZDnXcheNw1o-8H5X81DJqH7pq5u2buLvHvDtKpHVD_ow9lJeDjDKSve8L1B8JMo9Y</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Sethuraman, J.</creator><creator>Majer, A.</creator><creator>Friedrich, N. C.</creator><creator>Edgell, D. R.</creator><creator>Hausner, G.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>200910</creationdate><title>Genes within Genes: Multiple LAGLIDADG Homing Endonucleases Target the Ribosomal Protein S3 Gene Encoded within an rnl Group I Intron of Ophiostoma and Related Taxa</title><author>Sethuraman, J. ; Majer, A. ; Friedrich, N. C. ; Edgell, D. R. ; Hausner, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-5ea5d0051b805751447ad40481a08b09803314dde035cb012a5558cc382b29b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Ascomycetes</topic><topic>Base Sequence</topic><topic>Data processing</topic><topic>Dutch elm disease</topic><topic>Endonucleases - chemistry</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - isolation &amp; purification</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - isolation &amp; purification</topic><topic>Fungi</topic><topic>Fusion protein</topic><topic>Genes, Fungal</topic><topic>homing endonuclease</topic><topic>Hybrids</topic><topic>Inheritance Patterns - genetics</topic><topic>Introns</topic><topic>Introns - genetics</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Insertional</topic><topic>N-Terminus</topic><topic>Nucleotides</topic><topic>Open Reading Frames - genetics</topic><topic>Ophiostoma</topic><topic>Ophiostoma - classification</topic><topic>Ophiostoma - enzymology</topic><topic>Ophiostoma - genetics</topic><topic>Ophiostoma novo-ulmi</topic><topic>Phylogeny</topic><topic>Plant pathology</topic><topic>Polymerase Chain Reaction</topic><topic>Proteins</topic><topic>ribosomal protein S3</topic><topic>Ribosomal Proteins - genetics</topic><topic>Ribosome Subunits, Large - genetics</topic><topic>rps3 gene</topic><topic>Taxa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sethuraman, J.</creatorcontrib><creatorcontrib>Majer, A.</creatorcontrib><creatorcontrib>Friedrich, N. C.</creatorcontrib><creatorcontrib>Edgell, D. R.</creatorcontrib><creatorcontrib>Hausner, G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sethuraman, J.</au><au>Majer, A.</au><au>Friedrich, N. C.</au><au>Edgell, D. R.</au><au>Hausner, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genes within Genes: Multiple LAGLIDADG Homing Endonucleases Target the Ribosomal Protein S3 Gene Encoded within an rnl Group I Intron of Ophiostoma and Related Taxa</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2009-10</date><risdate>2009</risdate><volume>26</volume><issue>10</issue><spage>2299</spage><epage>2315</epage><pages>2299-2315</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>In some ascomycete fungi, ribosomal protein S3 (Rps3) is encoded within a group I intron (mL2449) that is inserted in the U11 region of the mitochondrial large subunit rDNA (rnl) gene. Previous characterization of the mL2449 intron in strains of Ophiostoma novo-ulmi subspecies americana (Dutch Elm Disease) revealed a complex genes-within-genes arrangement whereby a LAGLIDADG homing endonuclease gene (HEG) is inserted into the RPS3 gene near the 3′ terminus, creating a hybrid Rps3-LAGLIDADG fusion protein. Here, we examined 119 additional strains of Ophiostoma and related taxa representing 85 different species by a polymerase chain reaction- based survey and detected both short (∼1.6 kb) and long (&gt;2.2 kb) versions of the mL2449 intron in 88 and 31 strains, respectively. Among the long versions encountered, 21 were sequenced, revealing the presence of either intact or degenerated HEG-coding regions inserted within the RPS3 gene. Surprisingly, we identified two new HEG insertion sites in RPS3; one near the original C-terminal insertion site and one near the N-terminus of RPS3. In all instances, the HEGs are fused in-frame with the RPS3-coding sequences to create fusion proteins. However, comparative sequence analysis showed that upon insertion, the HEGs displaced a portion of the RPS3-coding region. Remarkably, the displaced RPS3-coding segments are duplicated and fused in-frame to the 3′ end of RPS3, restoring a full-length RPS3 gene. We cloned and expressed the LAGLIDADG portion of two Rps3-HEG fusions, and showed that I-OnuI and I-LtrI generate 4 nucleotide (nt), 3′ overhangs, and cleave at or 1 nt upstream of the HEG insertion site, respectively. Collectively, our data indicate that RPS3 genes are a refuge for distinct types of LAGLIDADG HEGs that are defined by the presence of duplicated segments of the host gene that restore the RPS3 gene, thus minimizing the impact of the HEG insertion on Rps3 function.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>19597163</pmid><doi>10.1093/molbev/msp145</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2009-10, Vol.26 (10), p.2299-2315
issn 0737-4038
1537-1719
language eng
recordid cdi_proquest_miscellaneous_21072049
source Oxford Academic Journals (Open Access)
subjects Amino Acid Motifs
Amino Acid Sequence
Ascomycetes
Base Sequence
Data processing
Dutch elm disease
Endonucleases - chemistry
Endonucleases - genetics
Endonucleases - isolation & purification
Fungal Proteins - chemistry
Fungal Proteins - genetics
Fungal Proteins - isolation & purification
Fungi
Fusion protein
Genes, Fungal
homing endonuclease
Hybrids
Inheritance Patterns - genetics
Introns
Introns - genetics
Mitochondria
Mitochondrial DNA
Molecular biology
Molecular Sequence Data
Mutagenesis, Insertional
N-Terminus
Nucleotides
Open Reading Frames - genetics
Ophiostoma
Ophiostoma - classification
Ophiostoma - enzymology
Ophiostoma - genetics
Ophiostoma novo-ulmi
Phylogeny
Plant pathology
Polymerase Chain Reaction
Proteins
ribosomal protein S3
Ribosomal Proteins - genetics
Ribosome Subunits, Large - genetics
rps3 gene
Taxa
title Genes within Genes: Multiple LAGLIDADG Homing Endonucleases Target the Ribosomal Protein S3 Gene Encoded within an rnl Group I Intron of Ophiostoma and Related Taxa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genes%20within%20Genes:%20Multiple%20LAGLIDADG%20Homing%20Endonucleases%20Target%20the%20Ribosomal%20Protein%20S3%20Gene%20Encoded%20within%20an%20rnl%20Group%20I%20Intron%20of%20Ophiostoma%20and%20Related%20Taxa&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Sethuraman,%20J.&rft.date=2009-10&rft.volume=26&rft.issue=10&rft.spage=2299&rft.epage=2315&rft.pages=2299-2315&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msp145&rft_dat=%3Cproquest_TOX%3E21072049%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232843758&rft_id=info:pmid/19597163&rft_oup_id=10.1093/molbev/msp145&rfr_iscdi=true