Iterative multi-path tracking for video and volume segmentation with sparse point supervision
highlights•Ground-truth annotation are necessary to train machine learning models.•We annotate video and volumetric sequences using a single 2D point per frame.•No constraints on appearance, shape, and motion/displacement of object of interest.•Promising results on surgical tool and slitlamp videos,...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2018-12, Vol.50, p.65-81 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | |
container_start_page | 65 |
container_title | Medical image analysis |
container_volume | 50 |
creator | Lejeune, Laurent Grossrieder, Jan Sznitman, Raphael |
description | highlights•Ground-truth annotation are necessary to train machine learning models.•We annotate video and volumetric sequences using a single 2D point per frame.•No constraints on appearance, shape, and motion/displacement of object of interest.•Promising results on surgical tool and slitlamp videos, brain MRI, CT scans of inner ear.
[Display omitted]
Recent machine learning strategies for segmentation tasks have shown great ability when trained on large pixel-wise annotated image datasets. It remains a major challenge however to aggregate such datasets, as the time and monetary cost associated with collecting extensive annotations is extremely high. This is particularly the case for generating precise pixel-wise annotations in video and volumetric image data. To this end, this work presents a novel framework to produce pixel-wise segmentations using minimal supervision. Our method relies on 2D point supervision, whereby a single 2D location within an object of interest is provided on each image of the data. Our method then estimates the object appearance in a semi-supervised fashion by learning object-image-specific features and by using these in a semi-supervised learning framework. Our object model is then used in a graph-based optimization problem that takes into account all provided locations and the image data in order to infer the complete pixel-wise segmentation. In practice, we solve this optimally as a tracking problem using a K-shortest path approach. Both the object model and segmentation are then refined iteratively to further improve the final segmentation. We show that by collecting 2D locations using a gaze tracker, our approach can provide state-of-the-art segmentations on a range of objects and image modalities (video and 3D volumes), and that these can then be used to train supervised machine learning classifiers. |
doi_str_mv | 10.1016/j.media.2018.08.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2105066675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841518306637</els_id><sourcerecordid>2159683185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-8bda106eb9b383472e97e5406143ef3c2d102f40c7d3d1df8a2877d5f71690103</originalsourceid><addsrcrecordid>eNp9kE1rFTEUhoMo9kN_gSABN27mepLMJLkLF1JsLRTc2GUJucmZmuvMZEwyI_57c3trFy6EAwmc530THkLeMNgwYPLDfjOiD3bDgekN1AH1jJwyIVmjWy6eP91Zd0LOct5DJdoWXpITAZxxJfQpubsumGwJK9JxGUpoZlu-05Ks-xGme9rHRNfgMVI7ebrGYRmRZrwfcSo1FSf6K1Q-zzZlpHMMU6F5mTGtIdftK_Kit0PG14_nObm9_Pzt4ktz8_Xq-uLTTeNawUujd94ykLjb7oQWreK4Vdi1IFkrsBeOewa8b8EpLzzzvbZcK-W7XjG5BQbinLw_9s4p_lwwFzOG7HAY7IRxyYYz6EBKqbqKvvsH3cclTfV3leq2UgumD5Q4Ui7FnBP2Zk5htOm3YWAO9s3ePNg3B_sG6oCqqbeP3cuubp8yf3VX4OMRwCpjDZhMdgEnV5sSumJ8DP994A9725ax</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2159683185</pqid></control><display><type>article</type><title>Iterative multi-path tracking for video and volume segmentation with sparse point supervision</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Lejeune, Laurent ; Grossrieder, Jan ; Sznitman, Raphael</creator><creatorcontrib>Lejeune, Laurent ; Grossrieder, Jan ; Sznitman, Raphael</creatorcontrib><description>highlights•Ground-truth annotation are necessary to train machine learning models.•We annotate video and volumetric sequences using a single 2D point per frame.•No constraints on appearance, shape, and motion/displacement of object of interest.•Promising results on surgical tool and slitlamp videos, brain MRI, CT scans of inner ear.
[Display omitted]
Recent machine learning strategies for segmentation tasks have shown great ability when trained on large pixel-wise annotated image datasets. It remains a major challenge however to aggregate such datasets, as the time and monetary cost associated with collecting extensive annotations is extremely high. This is particularly the case for generating precise pixel-wise annotations in video and volumetric image data. To this end, this work presents a novel framework to produce pixel-wise segmentations using minimal supervision. Our method relies on 2D point supervision, whereby a single 2D location within an object of interest is provided on each image of the data. Our method then estimates the object appearance in a semi-supervised fashion by learning object-image-specific features and by using these in a semi-supervised learning framework. Our object model is then used in a graph-based optimization problem that takes into account all provided locations and the image data in order to infer the complete pixel-wise segmentation. In practice, we solve this optimally as a tracking problem using a K-shortest path approach. Both the object model and segmentation are then refined iteratively to further improve the final segmentation. We show that by collecting 2D locations using a gaze tracker, our approach can provide state-of-the-art segmentations on a range of objects and image modalities (video and 3D volumes), and that these can then be used to train supervised machine learning classifiers.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2018.08.007</identifier><identifier>PMID: 30212738</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Annotations ; Artificial intelligence ; Datasets ; Image processing ; Image segmentation ; Iterative methods ; Learning algorithms ; Machine learning ; Multi-path tracking ; Optimization ; Optimization algorithms ; Path tracking ; Pixels ; Point-wise supervision ; Semantic segmentation ; Semi-supervised learning ; Shortest-path problems ; State of the art ; Tracking problem</subject><ispartof>Medical image analysis, 2018-12, Vol.50, p.65-81</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-8bda106eb9b383472e97e5406143ef3c2d102f40c7d3d1df8a2877d5f71690103</citedby><cites>FETCH-LOGICAL-c432t-8bda106eb9b383472e97e5406143ef3c2d102f40c7d3d1df8a2877d5f71690103</cites><orcidid>0000-0002-2164-3932 ; 0000-0001-6791-4753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2018.08.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30212738$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lejeune, Laurent</creatorcontrib><creatorcontrib>Grossrieder, Jan</creatorcontrib><creatorcontrib>Sznitman, Raphael</creatorcontrib><title>Iterative multi-path tracking for video and volume segmentation with sparse point supervision</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>highlights•Ground-truth annotation are necessary to train machine learning models.•We annotate video and volumetric sequences using a single 2D point per frame.•No constraints on appearance, shape, and motion/displacement of object of interest.•Promising results on surgical tool and slitlamp videos, brain MRI, CT scans of inner ear.
[Display omitted]
Recent machine learning strategies for segmentation tasks have shown great ability when trained on large pixel-wise annotated image datasets. It remains a major challenge however to aggregate such datasets, as the time and monetary cost associated with collecting extensive annotations is extremely high. This is particularly the case for generating precise pixel-wise annotations in video and volumetric image data. To this end, this work presents a novel framework to produce pixel-wise segmentations using minimal supervision. Our method relies on 2D point supervision, whereby a single 2D location within an object of interest is provided on each image of the data. Our method then estimates the object appearance in a semi-supervised fashion by learning object-image-specific features and by using these in a semi-supervised learning framework. Our object model is then used in a graph-based optimization problem that takes into account all provided locations and the image data in order to infer the complete pixel-wise segmentation. In practice, we solve this optimally as a tracking problem using a K-shortest path approach. Both the object model and segmentation are then refined iteratively to further improve the final segmentation. We show that by collecting 2D locations using a gaze tracker, our approach can provide state-of-the-art segmentations on a range of objects and image modalities (video and 3D volumes), and that these can then be used to train supervised machine learning classifiers.</description><subject>Annotations</subject><subject>Artificial intelligence</subject><subject>Datasets</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Iterative methods</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Multi-path tracking</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Path tracking</subject><subject>Pixels</subject><subject>Point-wise supervision</subject><subject>Semantic segmentation</subject><subject>Semi-supervised learning</subject><subject>Shortest-path problems</subject><subject>State of the art</subject><subject>Tracking problem</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1rFTEUhoMo9kN_gSABN27mepLMJLkLF1JsLRTc2GUJucmZmuvMZEwyI_57c3trFy6EAwmc530THkLeMNgwYPLDfjOiD3bDgekN1AH1jJwyIVmjWy6eP91Zd0LOct5DJdoWXpITAZxxJfQpubsumGwJK9JxGUpoZlu-05Ks-xGme9rHRNfgMVI7ebrGYRmRZrwfcSo1FSf6K1Q-zzZlpHMMU6F5mTGtIdftK_Kit0PG14_nObm9_Pzt4ktz8_Xq-uLTTeNawUujd94ykLjb7oQWreK4Vdi1IFkrsBeOewa8b8EpLzzzvbZcK-W7XjG5BQbinLw_9s4p_lwwFzOG7HAY7IRxyYYz6EBKqbqKvvsH3cclTfV3leq2UgumD5Q4Ui7FnBP2Zk5htOm3YWAO9s3ePNg3B_sG6oCqqbeP3cuubp8yf3VX4OMRwCpjDZhMdgEnV5sSumJ8DP994A9725ax</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Lejeune, Laurent</creator><creator>Grossrieder, Jan</creator><creator>Sznitman, Raphael</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2164-3932</orcidid><orcidid>https://orcid.org/0000-0001-6791-4753</orcidid></search><sort><creationdate>201812</creationdate><title>Iterative multi-path tracking for video and volume segmentation with sparse point supervision</title><author>Lejeune, Laurent ; Grossrieder, Jan ; Sznitman, Raphael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-8bda106eb9b383472e97e5406143ef3c2d102f40c7d3d1df8a2877d5f71690103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Annotations</topic><topic>Artificial intelligence</topic><topic>Datasets</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Iterative methods</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Multi-path tracking</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Path tracking</topic><topic>Pixels</topic><topic>Point-wise supervision</topic><topic>Semantic segmentation</topic><topic>Semi-supervised learning</topic><topic>Shortest-path problems</topic><topic>State of the art</topic><topic>Tracking problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lejeune, Laurent</creatorcontrib><creatorcontrib>Grossrieder, Jan</creatorcontrib><creatorcontrib>Sznitman, Raphael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lejeune, Laurent</au><au>Grossrieder, Jan</au><au>Sznitman, Raphael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative multi-path tracking for video and volume segmentation with sparse point supervision</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2018-12</date><risdate>2018</risdate><volume>50</volume><spage>65</spage><epage>81</epage><pages>65-81</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>highlights•Ground-truth annotation are necessary to train machine learning models.•We annotate video and volumetric sequences using a single 2D point per frame.•No constraints on appearance, shape, and motion/displacement of object of interest.•Promising results on surgical tool and slitlamp videos, brain MRI, CT scans of inner ear.
[Display omitted]
Recent machine learning strategies for segmentation tasks have shown great ability when trained on large pixel-wise annotated image datasets. It remains a major challenge however to aggregate such datasets, as the time and monetary cost associated with collecting extensive annotations is extremely high. This is particularly the case for generating precise pixel-wise annotations in video and volumetric image data. To this end, this work presents a novel framework to produce pixel-wise segmentations using minimal supervision. Our method relies on 2D point supervision, whereby a single 2D location within an object of interest is provided on each image of the data. Our method then estimates the object appearance in a semi-supervised fashion by learning object-image-specific features and by using these in a semi-supervised learning framework. Our object model is then used in a graph-based optimization problem that takes into account all provided locations and the image data in order to infer the complete pixel-wise segmentation. In practice, we solve this optimally as a tracking problem using a K-shortest path approach. Both the object model and segmentation are then refined iteratively to further improve the final segmentation. We show that by collecting 2D locations using a gaze tracker, our approach can provide state-of-the-art segmentations on a range of objects and image modalities (video and 3D volumes), and that these can then be used to train supervised machine learning classifiers.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30212738</pmid><doi>10.1016/j.media.2018.08.007</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2164-3932</orcidid><orcidid>https://orcid.org/0000-0001-6791-4753</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2018-12, Vol.50, p.65-81 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_2105066675 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Annotations Artificial intelligence Datasets Image processing Image segmentation Iterative methods Learning algorithms Machine learning Multi-path tracking Optimization Optimization algorithms Path tracking Pixels Point-wise supervision Semantic segmentation Semi-supervised learning Shortest-path problems State of the art Tracking problem |
title | Iterative multi-path tracking for video and volume segmentation with sparse point supervision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20multi-path%20tracking%20for%20video%20and%20volume%20segmentation%20with%20sparse%20point%20supervision&rft.jtitle=Medical%20image%20analysis&rft.au=Lejeune,%20Laurent&rft.date=2018-12&rft.volume=50&rft.spage=65&rft.epage=81&rft.pages=65-81&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2018.08.007&rft_dat=%3Cproquest_cross%3E2159683185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2159683185&rft_id=info:pmid/30212738&rft_els_id=S1361841518306637&rfr_iscdi=true |