Computer model for leg agility quantification and assessment for Parkinson’s disease patients
Parkinson’s disease (PD) is a progressive disorder that affects motor regulation. The Unified Parkinson’s Disease Rating Scale sponsored by the Movement Disorder Society (MDS-UPDRS) quantifies the illness progression based on clinical observations. The leg agility is an item in this scale, yet only...
Gespeichert in:
Veröffentlicht in: | Medical & biological engineering & computing 2019-02, Vol.57 (2), p.463-476 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | 2 |
container_start_page | 463 |
container_title | Medical & biological engineering & computing |
container_volume | 57 |
creator | Ornelas-Vences, Christopher Sánchez-Fernández, Luis Pastor Sánchez-Pérez, Luis Alejandro Martínez-Hernández, Juan Manuel |
description | Parkinson’s disease (PD) is a progressive disorder that affects motor regulation. The Unified Parkinson’s Disease Rating Scale sponsored by the Movement Disorder Society (MDS-UPDRS) quantifies the illness progression based on clinical observations. The leg agility is an item in this scale, yet only a visual detection of the features is used, leading to subjectivity. Overall, 50 patients (85 measurements) with varying motor impairment severity were asked to perform the leg agility item while wearing inertial sensor units on each ankle. We quantified features based on the MDS-UPDRS and designed a fuzzy inference model to capture clinical knowledge for assessment. The model proposed is capable of capturing all details regardless of the task speed, reducing the inherent uncertainty of the examiner observations obtaining a 92.35% of coincidence with at least one expert. In addition, the continuous scale implemented in this work prevents the inherent “floor/ceil” effect of discrete scales. This model proves the feasibility of quantification and assessment of the leg agility through inertial signals. Moreover, it allows a better follow-up of the PD patient state, due to the repeatability of our computer model and the continuous output, which are not objectively achievable through visual examination.
Graphical abstract
ᅟ |
doi_str_mv | 10.1007/s11517-018-1894-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2105046164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103363718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-b617165ff324c3fbbaa8bcc7c2bc5baa1da16c9cdccce35b065efea5b75e97b23</originalsourceid><addsrcrecordid>eNp1kM9u1DAQhy0EotvCA3BBlrhwCXhiO84e0ar8kSrBAc6W7UxWLom99SSH3voavB5PgrdbQELi5LHmm9-MPsZegHgDQpi3BKDBNAL6BvqtasQjtgGjoBFKqcdsI0CJ2oX-jJ0TXQvRgm7VU3Ym7yuQG2Z3eT6sCxY-5wEnPubCJ9xzt49TXG75zerSEscY3BJz4i4N3BEh0Yxpuae_uPI9Jsrp590P4kMkdIT8UPlK0DP2ZHQT4fOH94J9e3_5dfexufr84dPu3VUTpGmXxndgoNPjKFsV5Oi9c70PwYTWB10_MDjowjYMIQSU2otO44hOe6Nxa3wrL9jrU-6h5JsVabFzpIDT5BLmlWwLQgvVQacq-uof9DqvJdXrjpSUnTTQVwpOVCiZqOBoDyXOrtxaEPZo357s22rfHu1bUWdePiSvfsbhz8Rv3RVoTwDVVtpj-bv6_6m_AEwtko0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103363718</pqid></control><display><type>article</type><title>Computer model for leg agility quantification and assessment for Parkinson’s disease patients</title><source>Springer Nature - Complete Springer Journals</source><source>Business Source Complete</source><creator>Ornelas-Vences, Christopher ; Sánchez-Fernández, Luis Pastor ; Sánchez-Pérez, Luis Alejandro ; Martínez-Hernández, Juan Manuel</creator><creatorcontrib>Ornelas-Vences, Christopher ; Sánchez-Fernández, Luis Pastor ; Sánchez-Pérez, Luis Alejandro ; Martínez-Hernández, Juan Manuel</creatorcontrib><description>Parkinson’s disease (PD) is a progressive disorder that affects motor regulation. The Unified Parkinson’s Disease Rating Scale sponsored by the Movement Disorder Society (MDS-UPDRS) quantifies the illness progression based on clinical observations. The leg agility is an item in this scale, yet only a visual detection of the features is used, leading to subjectivity. Overall, 50 patients (85 measurements) with varying motor impairment severity were asked to perform the leg agility item while wearing inertial sensor units on each ankle. We quantified features based on the MDS-UPDRS and designed a fuzzy inference model to capture clinical knowledge for assessment. The model proposed is capable of capturing all details regardless of the task speed, reducing the inherent uncertainty of the examiner observations obtaining a 92.35% of coincidence with at least one expert. In addition, the continuous scale implemented in this work prevents the inherent “floor/ceil” effect of discrete scales. This model proves the feasibility of quantification and assessment of the leg agility through inertial signals. Moreover, it allows a better follow-up of the PD patient state, due to the repeatability of our computer model and the continuous output, which are not objectively achievable through visual examination.
Graphical abstract
ᅟ</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-018-1894-0</identifier><identifier>PMID: 30215213</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ankle ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Computer Applications ; Feasibility studies ; Human Physiology ; Imaging ; Inertial sensing devices ; Leg ; Motor ability ; Motors ; Movement disorders ; Neurodegenerative diseases ; Original Article ; Parkinson's disease ; Patients ; Radiology</subject><ispartof>Medical & biological engineering & computing, 2019-02, Vol.57 (2), p.463-476</ispartof><rights>International Federation for Medical and Biological Engineering 2018</rights><rights>Medical & Biological Engineering & Computing is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-b617165ff324c3fbbaa8bcc7c2bc5baa1da16c9cdccce35b065efea5b75e97b23</citedby><cites>FETCH-LOGICAL-c372t-b617165ff324c3fbbaa8bcc7c2bc5baa1da16c9cdccce35b065efea5b75e97b23</cites><orcidid>0000-0002-6298-336X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11517-018-1894-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11517-018-1894-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30215213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ornelas-Vences, Christopher</creatorcontrib><creatorcontrib>Sánchez-Fernández, Luis Pastor</creatorcontrib><creatorcontrib>Sánchez-Pérez, Luis Alejandro</creatorcontrib><creatorcontrib>Martínez-Hernández, Juan Manuel</creatorcontrib><title>Computer model for leg agility quantification and assessment for Parkinson’s disease patients</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Parkinson’s disease (PD) is a progressive disorder that affects motor regulation. The Unified Parkinson’s Disease Rating Scale sponsored by the Movement Disorder Society (MDS-UPDRS) quantifies the illness progression based on clinical observations. The leg agility is an item in this scale, yet only a visual detection of the features is used, leading to subjectivity. Overall, 50 patients (85 measurements) with varying motor impairment severity were asked to perform the leg agility item while wearing inertial sensor units on each ankle. We quantified features based on the MDS-UPDRS and designed a fuzzy inference model to capture clinical knowledge for assessment. The model proposed is capable of capturing all details regardless of the task speed, reducing the inherent uncertainty of the examiner observations obtaining a 92.35% of coincidence with at least one expert. In addition, the continuous scale implemented in this work prevents the inherent “floor/ceil” effect of discrete scales. This model proves the feasibility of quantification and assessment of the leg agility through inertial signals. Moreover, it allows a better follow-up of the PD patient state, due to the repeatability of our computer model and the continuous output, which are not objectively achievable through visual examination.
Graphical abstract
ᅟ</description><subject>Ankle</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Computer Applications</subject><subject>Feasibility studies</subject><subject>Human Physiology</subject><subject>Imaging</subject><subject>Inertial sensing devices</subject><subject>Leg</subject><subject>Motor ability</subject><subject>Motors</subject><subject>Movement disorders</subject><subject>Neurodegenerative diseases</subject><subject>Original Article</subject><subject>Parkinson's disease</subject><subject>Patients</subject><subject>Radiology</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9u1DAQhy0EotvCA3BBlrhwCXhiO84e0ar8kSrBAc6W7UxWLom99SSH3voavB5PgrdbQELi5LHmm9-MPsZegHgDQpi3BKDBNAL6BvqtasQjtgGjoBFKqcdsI0CJ2oX-jJ0TXQvRgm7VU3Ym7yuQG2Z3eT6sCxY-5wEnPubCJ9xzt49TXG75zerSEscY3BJz4i4N3BEh0Yxpuae_uPI9Jsrp590P4kMkdIT8UPlK0DP2ZHQT4fOH94J9e3_5dfexufr84dPu3VUTpGmXxndgoNPjKFsV5Oi9c70PwYTWB10_MDjowjYMIQSU2otO44hOe6Nxa3wrL9jrU-6h5JsVabFzpIDT5BLmlWwLQgvVQacq-uof9DqvJdXrjpSUnTTQVwpOVCiZqOBoDyXOrtxaEPZo357s22rfHu1bUWdePiSvfsbhz8Rv3RVoTwDVVtpj-bv6_6m_AEwtko0</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Ornelas-Vences, Christopher</creator><creator>Sánchez-Fernández, Luis Pastor</creator><creator>Sánchez-Pérez, Luis Alejandro</creator><creator>Martínez-Hernández, Juan Manuel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6298-336X</orcidid></search><sort><creationdate>20190201</creationdate><title>Computer model for leg agility quantification and assessment for Parkinson’s disease patients</title><author>Ornelas-Vences, Christopher ; Sánchez-Fernández, Luis Pastor ; Sánchez-Pérez, Luis Alejandro ; Martínez-Hernández, Juan Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-b617165ff324c3fbbaa8bcc7c2bc5baa1da16c9cdccce35b065efea5b75e97b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ankle</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Computer Applications</topic><topic>Feasibility studies</topic><topic>Human Physiology</topic><topic>Imaging</topic><topic>Inertial sensing devices</topic><topic>Leg</topic><topic>Motor ability</topic><topic>Motors</topic><topic>Movement disorders</topic><topic>Neurodegenerative diseases</topic><topic>Original Article</topic><topic>Parkinson's disease</topic><topic>Patients</topic><topic>Radiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ornelas-Vences, Christopher</creatorcontrib><creatorcontrib>Sánchez-Fernández, Luis Pastor</creatorcontrib><creatorcontrib>Sánchez-Pérez, Luis Alejandro</creatorcontrib><creatorcontrib>Martínez-Hernández, Juan Manuel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ornelas-Vences, Christopher</au><au>Sánchez-Fernández, Luis Pastor</au><au>Sánchez-Pérez, Luis Alejandro</au><au>Martínez-Hernández, Juan Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer model for leg agility quantification and assessment for Parkinson’s disease patients</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>57</volume><issue>2</issue><spage>463</spage><epage>476</epage><pages>463-476</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Parkinson’s disease (PD) is a progressive disorder that affects motor regulation. The Unified Parkinson’s Disease Rating Scale sponsored by the Movement Disorder Society (MDS-UPDRS) quantifies the illness progression based on clinical observations. The leg agility is an item in this scale, yet only a visual detection of the features is used, leading to subjectivity. Overall, 50 patients (85 measurements) with varying motor impairment severity were asked to perform the leg agility item while wearing inertial sensor units on each ankle. We quantified features based on the MDS-UPDRS and designed a fuzzy inference model to capture clinical knowledge for assessment. The model proposed is capable of capturing all details regardless of the task speed, reducing the inherent uncertainty of the examiner observations obtaining a 92.35% of coincidence with at least one expert. In addition, the continuous scale implemented in this work prevents the inherent “floor/ceil” effect of discrete scales. This model proves the feasibility of quantification and assessment of the leg agility through inertial signals. Moreover, it allows a better follow-up of the PD patient state, due to the repeatability of our computer model and the continuous output, which are not objectively achievable through visual examination.
Graphical abstract
ᅟ</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30215213</pmid><doi>10.1007/s11517-018-1894-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6298-336X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2019-02, Vol.57 (2), p.463-476 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_2105046164 |
source | Springer Nature - Complete Springer Journals; Business Source Complete |
subjects | Ankle Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Computer Applications Feasibility studies Human Physiology Imaging Inertial sensing devices Leg Motor ability Motors Movement disorders Neurodegenerative diseases Original Article Parkinson's disease Patients Radiology |
title | Computer model for leg agility quantification and assessment for Parkinson’s disease patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20model%20for%20leg%20agility%20quantification%20and%20assessment%20for%20Parkinson%E2%80%99s%20disease%20patients&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Ornelas-Vences,%20Christopher&rft.date=2019-02-01&rft.volume=57&rft.issue=2&rft.spage=463&rft.epage=476&rft.pages=463-476&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-018-1894-0&rft_dat=%3Cproquest_cross%3E2103363718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2103363718&rft_id=info:pmid/30215213&rfr_iscdi=true |