HEUVAC: A new high resolution solar EUV proxy model
This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations....
Gespeichert in:
Veröffentlicht in: | Advances in space research 2006, Vol.37 (2), p.315-322 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 2 |
container_start_page | 315 |
container_title | Advances in space research |
container_volume | 37 |
creator | Richards, Philip G. Woods, Thomas N. Peterson, William K. |
description | This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations. The HEUVAC model bins can range from 0.1 to 100
nm and extends the EUV model below 5
nm. The new solar EUV irradiance calculations with the high resolution irradiance model show good agreement with the most recent solar EUV irradiance measurements from the solar EUV experiment (SEE) instrument on the thermosphere, ionosphere, mesosphere, energetics, and dynamics satellite. Also, photoelectron fluxes calculated from both the SEE measured and EUVAC modeled solar EUV irradiances agree well with photoelectron flux measurements by the FAST satellite. The good agreement of the EUVAC and SEE derived photoelectron fluxes with the FAST measured fluxes at solar maximum lends support to an earlier finding that the previous reference solar EUV irradiances from the Atmosphere Explorer measurements need to be adjusted upward by a factor of 2–3 below 25
nm wavelength. This result is important for remote sensing of the ionosphere and thermosphere because, as this paper shows, the airglow emission rates calculated using the SEE and HEUVAC models are 50% higher than those based on earlier solar EUV irradiance models. The calculations also show that for solar maximum conditions on 21 April 2002, most of the degradation of the escaping photoelectron flux takes place below 1000
km altitude. |
doi_str_mv | 10.1016/j.asr.2005.06.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21038690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117705008288</els_id><sourcerecordid>21038690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-7aed4c61d583de9aab7c23b59726556b6c942c8c7026a1533a543b154dac80213</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGye2BLu7NhOYKqqQpEqsVBWy3Fc6ipNip0CfXtclZnpbvi__3QfIbcIOQLK-01uYsgZgMhB5sDxjIywVFWGVVGekxEwxTNEpS7JVYwbAGRKwYjw-Wz5Ppk-0Ant3Ddd-481DS727X7wfUfTYgJNEboL_c-BbvvGtdfkYmXa6G7-5pgsn2Zv03m2eH1-mU4WmeVVMWTKuKawEhtR8sZVxtTKMl6LSjEphKylrQpmS6uASYOCcyMKXqMoGmNLYMjH5O7Um25_7l0c9NZH69rWdK7fR80QeCkrSEE8BW3oYwxupXfBb004aAR91KM3OunRRz0apE56EvN4Ylz64Mu7oKP1rrOu8cHZQTe9_4f-BeUjauU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21038690</pqid></control><display><type>article</type><title>HEUVAC: A new high resolution solar EUV proxy model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Richards, Philip G. ; Woods, Thomas N. ; Peterson, William K.</creator><creatorcontrib>Richards, Philip G. ; Woods, Thomas N. ; Peterson, William K.</creatorcontrib><description>This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations. The HEUVAC model bins can range from 0.1 to 100
nm and extends the EUV model below 5
nm. The new solar EUV irradiance calculations with the high resolution irradiance model show good agreement with the most recent solar EUV irradiance measurements from the solar EUV experiment (SEE) instrument on the thermosphere, ionosphere, mesosphere, energetics, and dynamics satellite. Also, photoelectron fluxes calculated from both the SEE measured and EUVAC modeled solar EUV irradiances agree well with photoelectron flux measurements by the FAST satellite. The good agreement of the EUVAC and SEE derived photoelectron fluxes with the FAST measured fluxes at solar maximum lends support to an earlier finding that the previous reference solar EUV irradiances from the Atmosphere Explorer measurements need to be adjusted upward by a factor of 2–3 below 25
nm wavelength. This result is important for remote sensing of the ionosphere and thermosphere because, as this paper shows, the airglow emission rates calculated using the SEE and HEUVAC models are 50% higher than those based on earlier solar EUV irradiance models. The calculations also show that for solar maximum conditions on 21 April 2002, most of the degradation of the escaping photoelectron flux takes place below 1000
km altitude.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2005.06.031</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Airglow ; Ionization ; Photoelectron flux ; Solar EUV flux</subject><ispartof>Advances in space research, 2006, Vol.37 (2), p.315-322</ispartof><rights>2005 COSPAR</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-7aed4c61d583de9aab7c23b59726556b6c942c8c7026a1533a543b154dac80213</citedby><cites>FETCH-LOGICAL-c394t-7aed4c61d583de9aab7c23b59726556b6c942c8c7026a1533a543b154dac80213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.asr.2005.06.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4021,27921,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Richards, Philip G.</creatorcontrib><creatorcontrib>Woods, Thomas N.</creatorcontrib><creatorcontrib>Peterson, William K.</creatorcontrib><title>HEUVAC: A new high resolution solar EUV proxy model</title><title>Advances in space research</title><description>This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations. The HEUVAC model bins can range from 0.1 to 100
nm and extends the EUV model below 5
nm. The new solar EUV irradiance calculations with the high resolution irradiance model show good agreement with the most recent solar EUV irradiance measurements from the solar EUV experiment (SEE) instrument on the thermosphere, ionosphere, mesosphere, energetics, and dynamics satellite. Also, photoelectron fluxes calculated from both the SEE measured and EUVAC modeled solar EUV irradiances agree well with photoelectron flux measurements by the FAST satellite. The good agreement of the EUVAC and SEE derived photoelectron fluxes with the FAST measured fluxes at solar maximum lends support to an earlier finding that the previous reference solar EUV irradiances from the Atmosphere Explorer measurements need to be adjusted upward by a factor of 2–3 below 25
nm wavelength. This result is important for remote sensing of the ionosphere and thermosphere because, as this paper shows, the airglow emission rates calculated using the SEE and HEUVAC models are 50% higher than those based on earlier solar EUV irradiance models. The calculations also show that for solar maximum conditions on 21 April 2002, most of the degradation of the escaping photoelectron flux takes place below 1000
km altitude.</description><subject>Airglow</subject><subject>Ionization</subject><subject>Photoelectron flux</subject><subject>Solar EUV flux</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAGye2BLu7NhOYKqqQpEqsVBWy3Fc6ipNip0CfXtclZnpbvi__3QfIbcIOQLK-01uYsgZgMhB5sDxjIywVFWGVVGekxEwxTNEpS7JVYwbAGRKwYjw-Wz5Ppk-0Ant3Ddd-481DS727X7wfUfTYgJNEboL_c-BbvvGtdfkYmXa6G7-5pgsn2Zv03m2eH1-mU4WmeVVMWTKuKawEhtR8sZVxtTKMl6LSjEphKylrQpmS6uASYOCcyMKXqMoGmNLYMjH5O7Um25_7l0c9NZH69rWdK7fR80QeCkrSEE8BW3oYwxupXfBb004aAR91KM3OunRRz0apE56EvN4Ylz64Mu7oKP1rrOu8cHZQTe9_4f-BeUjauU</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Richards, Philip G.</creator><creator>Woods, Thomas N.</creator><creator>Peterson, William K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>2006</creationdate><title>HEUVAC: A new high resolution solar EUV proxy model</title><author>Richards, Philip G. ; Woods, Thomas N. ; Peterson, William K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-7aed4c61d583de9aab7c23b59726556b6c942c8c7026a1533a543b154dac80213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Airglow</topic><topic>Ionization</topic><topic>Photoelectron flux</topic><topic>Solar EUV flux</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richards, Philip G.</creatorcontrib><creatorcontrib>Woods, Thomas N.</creatorcontrib><creatorcontrib>Peterson, William K.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richards, Philip G.</au><au>Woods, Thomas N.</au><au>Peterson, William K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HEUVAC: A new high resolution solar EUV proxy model</atitle><jtitle>Advances in space research</jtitle><date>2006</date><risdate>2006</risdate><volume>37</volume><issue>2</issue><spage>315</spage><epage>322</epage><pages>315-322</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations. The HEUVAC model bins can range from 0.1 to 100
nm and extends the EUV model below 5
nm. The new solar EUV irradiance calculations with the high resolution irradiance model show good agreement with the most recent solar EUV irradiance measurements from the solar EUV experiment (SEE) instrument on the thermosphere, ionosphere, mesosphere, energetics, and dynamics satellite. Also, photoelectron fluxes calculated from both the SEE measured and EUVAC modeled solar EUV irradiances agree well with photoelectron flux measurements by the FAST satellite. The good agreement of the EUVAC and SEE derived photoelectron fluxes with the FAST measured fluxes at solar maximum lends support to an earlier finding that the previous reference solar EUV irradiances from the Atmosphere Explorer measurements need to be adjusted upward by a factor of 2–3 below 25
nm wavelength. This result is important for remote sensing of the ionosphere and thermosphere because, as this paper shows, the airglow emission rates calculated using the SEE and HEUVAC models are 50% higher than those based on earlier solar EUV irradiance models. The calculations also show that for solar maximum conditions on 21 April 2002, most of the degradation of the escaping photoelectron flux takes place below 1000
km altitude.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2005.06.031</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1177 |
ispartof | Advances in space research, 2006, Vol.37 (2), p.315-322 |
issn | 0273-1177 1879-1948 |
language | eng |
recordid | cdi_proquest_miscellaneous_21038690 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Airglow Ionization Photoelectron flux Solar EUV flux |
title | HEUVAC: A new high resolution solar EUV proxy model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HEUVAC:%20A%20new%20high%20resolution%20solar%20EUV%20proxy%20model&rft.jtitle=Advances%20in%20space%20research&rft.au=Richards,%20Philip%20G.&rft.date=2006&rft.volume=37&rft.issue=2&rft.spage=315&rft.epage=322&rft.pages=315-322&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2005.06.031&rft_dat=%3Cproquest_cross%3E21038690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21038690&rft_id=info:pmid/&rft_els_id=S0273117705008288&rfr_iscdi=true |