HEUVAC: A new high resolution solar EUV proxy model

This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2006, Vol.37 (2), p.315-322
Hauptverfasser: Richards, Philip G., Woods, Thomas N., Peterson, William K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 322
container_issue 2
container_start_page 315
container_title Advances in space research
container_volume 37
creator Richards, Philip G.
Woods, Thomas N.
Peterson, William K.
description This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations. The HEUVAC model bins can range from 0.1 to 100 nm and extends the EUV model below 5 nm. The new solar EUV irradiance calculations with the high resolution irradiance model show good agreement with the most recent solar EUV irradiance measurements from the solar EUV experiment (SEE) instrument on the thermosphere, ionosphere, mesosphere, energetics, and dynamics satellite. Also, photoelectron fluxes calculated from both the SEE measured and EUVAC modeled solar EUV irradiances agree well with photoelectron flux measurements by the FAST satellite. The good agreement of the EUVAC and SEE derived photoelectron fluxes with the FAST measured fluxes at solar maximum lends support to an earlier finding that the previous reference solar EUV irradiances from the Atmosphere Explorer measurements need to be adjusted upward by a factor of 2–3 below 25 nm wavelength. This result is important for remote sensing of the ionosphere and thermosphere because, as this paper shows, the airglow emission rates calculated using the SEE and HEUVAC models are 50% higher than those based on earlier solar EUV irradiance models. The calculations also show that for solar maximum conditions on 21 April 2002, most of the degradation of the escaping photoelectron flux takes place below 1000 km altitude.
doi_str_mv 10.1016/j.asr.2005.06.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21038690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117705008288</els_id><sourcerecordid>21038690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-7aed4c61d583de9aab7c23b59726556b6c942c8c7026a1533a543b154dac80213</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGye2BLu7NhOYKqqQpEqsVBWy3Fc6ipNip0CfXtclZnpbvi__3QfIbcIOQLK-01uYsgZgMhB5sDxjIywVFWGVVGekxEwxTNEpS7JVYwbAGRKwYjw-Wz5Ppk-0Ant3Ddd-481DS727X7wfUfTYgJNEboL_c-BbvvGtdfkYmXa6G7-5pgsn2Zv03m2eH1-mU4WmeVVMWTKuKawEhtR8sZVxtTKMl6LSjEphKylrQpmS6uASYOCcyMKXqMoGmNLYMjH5O7Um25_7l0c9NZH69rWdK7fR80QeCkrSEE8BW3oYwxupXfBb004aAR91KM3OunRRz0apE56EvN4Ylz64Mu7oKP1rrOu8cHZQTe9_4f-BeUjauU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21038690</pqid></control><display><type>article</type><title>HEUVAC: A new high resolution solar EUV proxy model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Richards, Philip G. ; Woods, Thomas N. ; Peterson, William K.</creator><creatorcontrib>Richards, Philip G. ; Woods, Thomas N. ; Peterson, William K.</creatorcontrib><description>This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations. The HEUVAC model bins can range from 0.1 to 100 nm and extends the EUV model below 5 nm. The new solar EUV irradiance calculations with the high resolution irradiance model show good agreement with the most recent solar EUV irradiance measurements from the solar EUV experiment (SEE) instrument on the thermosphere, ionosphere, mesosphere, energetics, and dynamics satellite. Also, photoelectron fluxes calculated from both the SEE measured and EUVAC modeled solar EUV irradiances agree well with photoelectron flux measurements by the FAST satellite. The good agreement of the EUVAC and SEE derived photoelectron fluxes with the FAST measured fluxes at solar maximum lends support to an earlier finding that the previous reference solar EUV irradiances from the Atmosphere Explorer measurements need to be adjusted upward by a factor of 2–3 below 25 nm wavelength. This result is important for remote sensing of the ionosphere and thermosphere because, as this paper shows, the airglow emission rates calculated using the SEE and HEUVAC models are 50% higher than those based on earlier solar EUV irradiance models. The calculations also show that for solar maximum conditions on 21 April 2002, most of the degradation of the escaping photoelectron flux takes place below 1000 km altitude.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2005.06.031</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Airglow ; Ionization ; Photoelectron flux ; Solar EUV flux</subject><ispartof>Advances in space research, 2006, Vol.37 (2), p.315-322</ispartof><rights>2005 COSPAR</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-7aed4c61d583de9aab7c23b59726556b6c942c8c7026a1533a543b154dac80213</citedby><cites>FETCH-LOGICAL-c394t-7aed4c61d583de9aab7c23b59726556b6c942c8c7026a1533a543b154dac80213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.asr.2005.06.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,4021,27921,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Richards, Philip G.</creatorcontrib><creatorcontrib>Woods, Thomas N.</creatorcontrib><creatorcontrib>Peterson, William K.</creatorcontrib><title>HEUVAC: A new high resolution solar EUV proxy model</title><title>Advances in space research</title><description>This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations. The HEUVAC model bins can range from 0.1 to 100 nm and extends the EUV model below 5 nm. The new solar EUV irradiance calculations with the high resolution irradiance model show good agreement with the most recent solar EUV irradiance measurements from the solar EUV experiment (SEE) instrument on the thermosphere, ionosphere, mesosphere, energetics, and dynamics satellite. Also, photoelectron fluxes calculated from both the SEE measured and EUVAC modeled solar EUV irradiances agree well with photoelectron flux measurements by the FAST satellite. The good agreement of the EUVAC and SEE derived photoelectron fluxes with the FAST measured fluxes at solar maximum lends support to an earlier finding that the previous reference solar EUV irradiances from the Atmosphere Explorer measurements need to be adjusted upward by a factor of 2–3 below 25 nm wavelength. This result is important for remote sensing of the ionosphere and thermosphere because, as this paper shows, the airglow emission rates calculated using the SEE and HEUVAC models are 50% higher than those based on earlier solar EUV irradiance models. The calculations also show that for solar maximum conditions on 21 April 2002, most of the degradation of the escaping photoelectron flux takes place below 1000 km altitude.</description><subject>Airglow</subject><subject>Ionization</subject><subject>Photoelectron flux</subject><subject>Solar EUV flux</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAGye2BLu7NhOYKqqQpEqsVBWy3Fc6ipNip0CfXtclZnpbvi__3QfIbcIOQLK-01uYsgZgMhB5sDxjIywVFWGVVGekxEwxTNEpS7JVYwbAGRKwYjw-Wz5Ppk-0Ant3Ddd-481DS727X7wfUfTYgJNEboL_c-BbvvGtdfkYmXa6G7-5pgsn2Zv03m2eH1-mU4WmeVVMWTKuKawEhtR8sZVxtTKMl6LSjEphKylrQpmS6uASYOCcyMKXqMoGmNLYMjH5O7Um25_7l0c9NZH69rWdK7fR80QeCkrSEE8BW3oYwxupXfBb004aAR91KM3OunRRz0apE56EvN4Ylz64Mu7oKP1rrOu8cHZQTe9_4f-BeUjauU</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Richards, Philip G.</creator><creator>Woods, Thomas N.</creator><creator>Peterson, William K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TV</scope><scope>C1K</scope><scope>KL.</scope></search><sort><creationdate>2006</creationdate><title>HEUVAC: A new high resolution solar EUV proxy model</title><author>Richards, Philip G. ; Woods, Thomas N. ; Peterson, William K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-7aed4c61d583de9aab7c23b59726556b6c942c8c7026a1533a543b154dac80213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Airglow</topic><topic>Ionization</topic><topic>Photoelectron flux</topic><topic>Solar EUV flux</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richards, Philip G.</creatorcontrib><creatorcontrib>Woods, Thomas N.</creatorcontrib><creatorcontrib>Peterson, William K.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richards, Philip G.</au><au>Woods, Thomas N.</au><au>Peterson, William K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HEUVAC: A new high resolution solar EUV proxy model</atitle><jtitle>Advances in space research</jtitle><date>2006</date><risdate>2006</risdate><volume>37</volume><issue>2</issue><spage>315</spage><epage>322</epage><pages>315-322</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>This paper presents a new high-resolution version of the solar EUV irradiance model for aeronomic calculations (HEUVAC) that is designed to facilitate comparisons with measured spectra and enable more accurate calculations of ionization rates, airglow emission rates, and photoelectron calculations. The HEUVAC model bins can range from 0.1 to 100 nm and extends the EUV model below 5 nm. The new solar EUV irradiance calculations with the high resolution irradiance model show good agreement with the most recent solar EUV irradiance measurements from the solar EUV experiment (SEE) instrument on the thermosphere, ionosphere, mesosphere, energetics, and dynamics satellite. Also, photoelectron fluxes calculated from both the SEE measured and EUVAC modeled solar EUV irradiances agree well with photoelectron flux measurements by the FAST satellite. The good agreement of the EUVAC and SEE derived photoelectron fluxes with the FAST measured fluxes at solar maximum lends support to an earlier finding that the previous reference solar EUV irradiances from the Atmosphere Explorer measurements need to be adjusted upward by a factor of 2–3 below 25 nm wavelength. This result is important for remote sensing of the ionosphere and thermosphere because, as this paper shows, the airglow emission rates calculated using the SEE and HEUVAC models are 50% higher than those based on earlier solar EUV irradiance models. The calculations also show that for solar maximum conditions on 21 April 2002, most of the degradation of the escaping photoelectron flux takes place below 1000 km altitude.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2005.06.031</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1177
ispartof Advances in space research, 2006, Vol.37 (2), p.315-322
issn 0273-1177
1879-1948
language eng
recordid cdi_proquest_miscellaneous_21038690
source ScienceDirect Journals (5 years ago - present)
subjects Airglow
Ionization
Photoelectron flux
Solar EUV flux
title HEUVAC: A new high resolution solar EUV proxy model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HEUVAC:%20A%20new%20high%20resolution%20solar%20EUV%20proxy%20model&rft.jtitle=Advances%20in%20space%20research&rft.au=Richards,%20Philip%20G.&rft.date=2006&rft.volume=37&rft.issue=2&rft.spage=315&rft.epage=322&rft.pages=315-322&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2005.06.031&rft_dat=%3Cproquest_cross%3E21038690%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21038690&rft_id=info:pmid/&rft_els_id=S0273117705008288&rfr_iscdi=true