Local motion correction for lung tumours in PET/CT—first results
Purpose Respiratory motion of lung lesions is a limiting factor of quantification of positron emission tomography (PET) data. As some important applications of PET such as therapy monitoring and radiation therapy treatment planning require precise quantification, it is necessary to correct PET data...
Gespeichert in:
Veröffentlicht in: | European Journal of Nuclear Medicine 2008-11, Vol.35 (11), p.1981-1988 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1988 |
---|---|
container_issue | 11 |
container_start_page | 1981 |
container_title | European Journal of Nuclear Medicine |
container_volume | 35 |
creator | Bundschuh, Ralph A. Martínez-Möller, Axel Essler, Markus Nekolla, Stephan G. Ziegler, Sibylle I. Schwaiger, Markus |
description | Purpose
Respiratory motion of lung lesions is a limiting factor of quantification of positron emission tomography (PET) data. As some important applications of PET such as therapy monitoring and radiation therapy treatment planning require precise quantification, it is necessary to correct PET data for motion artefacts.
Methods
The method is based on list-mode data. First, the motion of the lesion was detected by a centre of mass approach. In the second step, data were sorted corresponding to the breathing state. A volume of interest (VOI) around the lesion was defined manually, and the motion of the lesion in this VOI was measured with reference to the end-expiration image. Then, all voxels in the VOI were shifted according to the measured lesion motion. After optimisation of parameters and verification of the method using a computer-controlled motion phantom, it was applied to nine patients with solitary lesions of the lung.
Results
Fifty percent difference in measured lesion volume and 26% in mean activity concentration were found comparing PET data before and after applying the correction algorithm when simulating a motion amplitude of 28 mm in phantom studies. For patients, maximum changes of 27% in volume and 13% in mean standardised uptake values (SUV) were found.
Conclusion
As respiratory motion is affecting quantification of PET images, correction algorithms are essential for applications that require precise quantification. We described a method which improves the quantification of moving lesions by a local motion correction using list-mode data without increasing acquisition time or reduced signal-to-noise ratio of the images. |
doi_str_mv | 10.1007/s00259-008-0868-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21034622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21034622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-567d5de64d7e21be533dfc5aff756d45ab8ca6f9086c52514b27f2e853d7fe613</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EoqVwADYoYsEudOz4kSyhKg-pEizK2kocu0qVxMVOFuw4RE_ISXBJRSUkNvZI_uYfz4fQJYZbDCCmHoCwLAZIY0h5OI7QGHOcxQLS7Pi3FjBCZ96vAXBK0uwUjXCgSUZhjO4XVuV11Niusm2krHNa_ZTGuqju21XU9Y3tnY-qNnqdL6ez5dfn1lTOd5HTvq87f45OTF57fbG_J-jtYb6cPcWLl8fn2d0iVhSgixkXJSs1p6XQBBeaJUlpFMuNEYyXlOVFqnJusrCJYoRhWhBhiE5ZUgqjOU4m6GbI3Tj73mvfyabyStd13mrbe0kwJJQTEsDrP-A6bNCGvwWGckpZwgOEB0g5673TRm5c1eTuQ2KQO7tysCuDXbmzKyH0XO2D-6LR5aFjrzMAZAB8eGpX2h0m_5_6DeBRhPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214644536</pqid></control><display><type>article</type><title>Local motion correction for lung tumours in PET/CT—first results</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bundschuh, Ralph A. ; Martínez-Möller, Axel ; Essler, Markus ; Nekolla, Stephan G. ; Ziegler, Sibylle I. ; Schwaiger, Markus</creator><creatorcontrib>Bundschuh, Ralph A. ; Martínez-Möller, Axel ; Essler, Markus ; Nekolla, Stephan G. ; Ziegler, Sibylle I. ; Schwaiger, Markus</creatorcontrib><description>Purpose
Respiratory motion of lung lesions is a limiting factor of quantification of positron emission tomography (PET) data. As some important applications of PET such as therapy monitoring and radiation therapy treatment planning require precise quantification, it is necessary to correct PET data for motion artefacts.
Methods
The method is based on list-mode data. First, the motion of the lesion was detected by a centre of mass approach. In the second step, data were sorted corresponding to the breathing state. A volume of interest (VOI) around the lesion was defined manually, and the motion of the lesion in this VOI was measured with reference to the end-expiration image. Then, all voxels in the VOI were shifted according to the measured lesion motion. After optimisation of parameters and verification of the method using a computer-controlled motion phantom, it was applied to nine patients with solitary lesions of the lung.
Results
Fifty percent difference in measured lesion volume and 26% in mean activity concentration were found comparing PET data before and after applying the correction algorithm when simulating a motion amplitude of 28 mm in phantom studies. For patients, maximum changes of 27% in volume and 13% in mean standardised uptake values (SUV) were found.
Conclusion
As respiratory motion is affecting quantification of PET images, correction algorithms are essential for applications that require precise quantification. We described a method which improves the quantification of moving lesions by a local motion correction using list-mode data without increasing acquisition time or reduced signal-to-noise ratio of the images.</description><identifier>ISSN: 1619-7070</identifier><identifier>ISSN: 0340-6997</identifier><identifier>EISSN: 1619-7089</identifier><identifier>DOI: 10.1007/s00259-008-0868-0</identifier><identifier>PMID: 18682940</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Cardiology ; Humans ; Image Processing, Computer-Assisted ; Imaging ; Lung cancer ; Lung Neoplasms - diagnostic imaging ; Lung Neoplasms - physiopathology ; Medicine ; Medicine & Public Health ; Movement ; Nuclear Medicine ; Oncology ; Original Article ; Orthopedics ; Phantoms, Imaging ; Positron-Emission Tomography - methods ; Radiology ; Respiration ; Time Factors ; Tomography ; Tomography, X-Ray Computed - methods ; Tumors</subject><ispartof>European Journal of Nuclear Medicine, 2008-11, Vol.35 (11), p.1981-1988</ispartof><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-567d5de64d7e21be533dfc5aff756d45ab8ca6f9086c52514b27f2e853d7fe613</citedby><cites>FETCH-LOGICAL-c400t-567d5de64d7e21be533dfc5aff756d45ab8ca6f9086c52514b27f2e853d7fe613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00259-008-0868-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00259-008-0868-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18682940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bundschuh, Ralph A.</creatorcontrib><creatorcontrib>Martínez-Möller, Axel</creatorcontrib><creatorcontrib>Essler, Markus</creatorcontrib><creatorcontrib>Nekolla, Stephan G.</creatorcontrib><creatorcontrib>Ziegler, Sibylle I.</creatorcontrib><creatorcontrib>Schwaiger, Markus</creatorcontrib><title>Local motion correction for lung tumours in PET/CT—first results</title><title>European Journal of Nuclear Medicine</title><addtitle>Eur J Nucl Med Mol Imaging</addtitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><description>Purpose
Respiratory motion of lung lesions is a limiting factor of quantification of positron emission tomography (PET) data. As some important applications of PET such as therapy monitoring and radiation therapy treatment planning require precise quantification, it is necessary to correct PET data for motion artefacts.
Methods
The method is based on list-mode data. First, the motion of the lesion was detected by a centre of mass approach. In the second step, data were sorted corresponding to the breathing state. A volume of interest (VOI) around the lesion was defined manually, and the motion of the lesion in this VOI was measured with reference to the end-expiration image. Then, all voxels in the VOI were shifted according to the measured lesion motion. After optimisation of parameters and verification of the method using a computer-controlled motion phantom, it was applied to nine patients with solitary lesions of the lung.
Results
Fifty percent difference in measured lesion volume and 26% in mean activity concentration were found comparing PET data before and after applying the correction algorithm when simulating a motion amplitude of 28 mm in phantom studies. For patients, maximum changes of 27% in volume and 13% in mean standardised uptake values (SUV) were found.
Conclusion
As respiratory motion is affecting quantification of PET images, correction algorithms are essential for applications that require precise quantification. We described a method which improves the quantification of moving lesions by a local motion correction using list-mode data without increasing acquisition time or reduced signal-to-noise ratio of the images.</description><subject>Cardiology</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imaging</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lung Neoplasms - physiopathology</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Movement</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Original Article</subject><subject>Orthopedics</subject><subject>Phantoms, Imaging</subject><subject>Positron-Emission Tomography - methods</subject><subject>Radiology</subject><subject>Respiration</subject><subject>Time Factors</subject><subject>Tomography</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Tumors</subject><issn>1619-7070</issn><issn>0340-6997</issn><issn>1619-7089</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtOwzAQhi0EoqVwADYoYsEudOz4kSyhKg-pEizK2kocu0qVxMVOFuw4RE_ISXBJRSUkNvZI_uYfz4fQJYZbDCCmHoCwLAZIY0h5OI7QGHOcxQLS7Pi3FjBCZ96vAXBK0uwUjXCgSUZhjO4XVuV11Niusm2krHNa_ZTGuqju21XU9Y3tnY-qNnqdL6ez5dfn1lTOd5HTvq87f45OTF57fbG_J-jtYb6cPcWLl8fn2d0iVhSgixkXJSs1p6XQBBeaJUlpFMuNEYyXlOVFqnJusrCJYoRhWhBhiE5ZUgqjOU4m6GbI3Tj73mvfyabyStd13mrbe0kwJJQTEsDrP-A6bNCGvwWGckpZwgOEB0g5673TRm5c1eTuQ2KQO7tysCuDXbmzKyH0XO2D-6LR5aFjrzMAZAB8eGpX2h0m_5_6DeBRhPU</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Bundschuh, Ralph A.</creator><creator>Martínez-Möller, Axel</creator><creator>Essler, Markus</creator><creator>Nekolla, Stephan G.</creator><creator>Ziegler, Sibylle I.</creator><creator>Schwaiger, Markus</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20081101</creationdate><title>Local motion correction for lung tumours in PET/CT—first results</title><author>Bundschuh, Ralph A. ; Martínez-Möller, Axel ; Essler, Markus ; Nekolla, Stephan G. ; Ziegler, Sibylle I. ; Schwaiger, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-567d5de64d7e21be533dfc5aff756d45ab8ca6f9086c52514b27f2e853d7fe613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Cardiology</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imaging</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lung Neoplasms - physiopathology</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Movement</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Original Article</topic><topic>Orthopedics</topic><topic>Phantoms, Imaging</topic><topic>Positron-Emission Tomography - methods</topic><topic>Radiology</topic><topic>Respiration</topic><topic>Time Factors</topic><topic>Tomography</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bundschuh, Ralph A.</creatorcontrib><creatorcontrib>Martínez-Möller, Axel</creatorcontrib><creatorcontrib>Essler, Markus</creatorcontrib><creatorcontrib>Nekolla, Stephan G.</creatorcontrib><creatorcontrib>Ziegler, Sibylle I.</creatorcontrib><creatorcontrib>Schwaiger, Markus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>European Journal of Nuclear Medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bundschuh, Ralph A.</au><au>Martínez-Möller, Axel</au><au>Essler, Markus</au><au>Nekolla, Stephan G.</au><au>Ziegler, Sibylle I.</au><au>Schwaiger, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local motion correction for lung tumours in PET/CT—first results</atitle><jtitle>European Journal of Nuclear Medicine</jtitle><stitle>Eur J Nucl Med Mol Imaging</stitle><addtitle>Eur J Nucl Med Mol Imaging</addtitle><date>2008-11-01</date><risdate>2008</risdate><volume>35</volume><issue>11</issue><spage>1981</spage><epage>1988</epage><pages>1981-1988</pages><issn>1619-7070</issn><issn>0340-6997</issn><eissn>1619-7089</eissn><abstract>Purpose
Respiratory motion of lung lesions is a limiting factor of quantification of positron emission tomography (PET) data. As some important applications of PET such as therapy monitoring and radiation therapy treatment planning require precise quantification, it is necessary to correct PET data for motion artefacts.
Methods
The method is based on list-mode data. First, the motion of the lesion was detected by a centre of mass approach. In the second step, data were sorted corresponding to the breathing state. A volume of interest (VOI) around the lesion was defined manually, and the motion of the lesion in this VOI was measured with reference to the end-expiration image. Then, all voxels in the VOI were shifted according to the measured lesion motion. After optimisation of parameters and verification of the method using a computer-controlled motion phantom, it was applied to nine patients with solitary lesions of the lung.
Results
Fifty percent difference in measured lesion volume and 26% in mean activity concentration were found comparing PET data before and after applying the correction algorithm when simulating a motion amplitude of 28 mm in phantom studies. For patients, maximum changes of 27% in volume and 13% in mean standardised uptake values (SUV) were found.
Conclusion
As respiratory motion is affecting quantification of PET images, correction algorithms are essential for applications that require precise quantification. We described a method which improves the quantification of moving lesions by a local motion correction using list-mode data without increasing acquisition time or reduced signal-to-noise ratio of the images.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>18682940</pmid><doi>10.1007/s00259-008-0868-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1619-7070 |
ispartof | European Journal of Nuclear Medicine, 2008-11, Vol.35 (11), p.1981-1988 |
issn | 1619-7070 0340-6997 1619-7089 |
language | eng |
recordid | cdi_proquest_miscellaneous_21034622 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Cardiology Humans Image Processing, Computer-Assisted Imaging Lung cancer Lung Neoplasms - diagnostic imaging Lung Neoplasms - physiopathology Medicine Medicine & Public Health Movement Nuclear Medicine Oncology Original Article Orthopedics Phantoms, Imaging Positron-Emission Tomography - methods Radiology Respiration Time Factors Tomography Tomography, X-Ray Computed - methods Tumors |
title | Local motion correction for lung tumours in PET/CT—first results |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A04%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20motion%20correction%20for%20lung%20tumours%20in%20PET/CT%E2%80%94first%20results&rft.jtitle=European%20Journal%20of%20Nuclear%20Medicine&rft.au=Bundschuh,%20Ralph%20A.&rft.date=2008-11-01&rft.volume=35&rft.issue=11&rft.spage=1981&rft.epage=1988&rft.pages=1981-1988&rft.issn=1619-7070&rft.eissn=1619-7089&rft_id=info:doi/10.1007/s00259-008-0868-0&rft_dat=%3Cproquest_cross%3E21034622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214644536&rft_id=info:pmid/18682940&rfr_iscdi=true |