Detecting gravitational wave emission from the known accreting neutron stars
Detection of gravitational waves from accreting neutron stars (NSs) in our Galaxy, due to ellipticity or internal oscillation, would be a breakthrough in our understanding of compact objects and explain the absence of NSs rotating near the break-up limit. Direct detection, however, poses a formidabl...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2008-09, Vol.389 (2), p.839-868 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 868 |
---|---|
container_issue | 2 |
container_start_page | 839 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 389 |
creator | Watts, Anna L. Krishnan, Badri Bildsten, Lars Schutz, Bernard F. |
description | Detection of gravitational waves from accreting neutron stars (NSs) in our Galaxy, due to ellipticity or internal oscillation, would be a breakthrough in our understanding of compact objects and explain the absence of NSs rotating near the break-up limit. Direct detection, however, poses a formidable challenge. Using the current data available on the properties of the accreting NSs in low-mass X-ray binaries (LMXBs), we quantify the detectability for the known accreting NSs, considering various emission scenarios and taking into account the negative impact of parameter uncertainty on the data analysis process. Only a few of the persistently bright NSs accreting at rates near the Eddington limit are detectable by Advanced LIGO if they are emitting gravitational waves at a rate matching the torque from accretion. A larger fraction of the known population is detectable if the spin and orbital parameters are known in advance, especially with the narrow-band Advanced LIGO. We identify the most promising targets, and list specific actions that would lead to significant improvements in detection probability. These include astronomical observations (especially for unknown orbital periods), improvements in data analysis algorithms and capabilities, and further detector development. |
doi_str_mv | 10.1111/j.1365-2966.2008.13594.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21033056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1365-2966.2008.13594.x</oup_id><sourcerecordid>1548682941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6004-addb2c8e9636bc5fcbf77a59f282b9c0436ed2bdedcaeddc98f5e35db7b1f8b93</originalsourceid><addsrcrecordid>eNqNkF1P2zAYha1pSHSw_xBN2u5S_BE7zs2kARsgFRDVEJeW47xmKWlSbIeWf4_ToF5MIOEb-5Wfc3x8EEoInpK4jhZTwgRPaSHElGIs48iLbLr5hCa7i89ogjHjqcwJ2UdfvF9gjDNGxQTNTiGACXV7n9w7_VQHHequ1U2y1k-QwLL2Ps6Jdd0yCf8geWi7dZtoYxxsRS30wUXAB-38IdqzuvHw9XU_QLd_fv89OU9n12cXJ79mqRHx3VRXVUmNhEIwURpuTWnzXPPCUknLwsRkAipaVlAZDVVlCmk5MF6VeUmsLAt2gH6MvivXPfbgg4o5DTSNbqHrvaIEM4a5iOC3_8BF17v4vcjgnOVEZDJCcoSM67x3YNXK1UvtnhXBauhYLdRQpRqqVEPHatux2kTp91d_7Y1urNOtqf1OT7EgMsuGwD9Hbl038Pxhf3V5Nd8eowEbDbp-9Y48fSteOqpqH2Cz02n3oET8PVd3V2dqfsxv5uTuVN2wF-Zvr98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>207371648</pqid></control><display><type>article</type><title>Detecting gravitational wave emission from the known accreting neutron stars</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Watts, Anna L. ; Krishnan, Badri ; Bildsten, Lars ; Schutz, Bernard F.</creator><creatorcontrib>Watts, Anna L. ; Krishnan, Badri ; Bildsten, Lars ; Schutz, Bernard F.</creatorcontrib><description>Detection of gravitational waves from accreting neutron stars (NSs) in our Galaxy, due to ellipticity or internal oscillation, would be a breakthrough in our understanding of compact objects and explain the absence of NSs rotating near the break-up limit. Direct detection, however, poses a formidable challenge. Using the current data available on the properties of the accreting NSs in low-mass X-ray binaries (LMXBs), we quantify the detectability for the known accreting NSs, considering various emission scenarios and taking into account the negative impact of parameter uncertainty on the data analysis process. Only a few of the persistently bright NSs accreting at rates near the Eddington limit are detectable by Advanced LIGO if they are emitting gravitational waves at a rate matching the torque from accretion. A larger fraction of the known population is detectable if the spin and orbital parameters are known in advance, especially with the narrow-band Advanced LIGO. We identify the most promising targets, and list specific actions that would lead to significant improvements in detection probability. These include astronomical observations (especially for unknown orbital periods), improvements in data analysis algorithms and capabilities, and further detector development.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1111/j.1365-2966.2008.13594.x</identifier><identifier>CODEN: MNRAA4</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>accretion ; accretion discs ; Accretion disks ; accretion, accretion discs ; Astronomy ; Astrophysics ; Earth, ocean, space ; Exact sciences and technology ; gravitational waves ; Gravity ; Neutrons ; Stars & galaxies ; stars: neutron ; stars: rotation ; X-rays: binaries ; X-rays: bursts</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2008-09, Vol.389 (2), p.839-868</ispartof><rights>2008 The Authors. Journal compilation © 2008 RAS 2008</rights><rights>2008 The Authors. Journal compilation © 2008 RAS</rights><rights>2008 INIST-CNRS</rights><rights>Journal compilation © 2008 RAS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6004-addb2c8e9636bc5fcbf77a59f282b9c0436ed2bdedcaeddc98f5e35db7b1f8b93</citedby><cites>FETCH-LOGICAL-c6004-addb2c8e9636bc5fcbf77a59f282b9c0436ed2bdedcaeddc98f5e35db7b1f8b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2966.2008.13594.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2966.2008.13594.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20618449$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Watts, Anna L.</creatorcontrib><creatorcontrib>Krishnan, Badri</creatorcontrib><creatorcontrib>Bildsten, Lars</creatorcontrib><creatorcontrib>Schutz, Bernard F.</creatorcontrib><title>Detecting gravitational wave emission from the known accreting neutron stars</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Monthly Notices of the Royal Astronomical Society</addtitle><description>Detection of gravitational waves from accreting neutron stars (NSs) in our Galaxy, due to ellipticity or internal oscillation, would be a breakthrough in our understanding of compact objects and explain the absence of NSs rotating near the break-up limit. Direct detection, however, poses a formidable challenge. Using the current data available on the properties of the accreting NSs in low-mass X-ray binaries (LMXBs), we quantify the detectability for the known accreting NSs, considering various emission scenarios and taking into account the negative impact of parameter uncertainty on the data analysis process. Only a few of the persistently bright NSs accreting at rates near the Eddington limit are detectable by Advanced LIGO if they are emitting gravitational waves at a rate matching the torque from accretion. A larger fraction of the known population is detectable if the spin and orbital parameters are known in advance, especially with the narrow-band Advanced LIGO. We identify the most promising targets, and list specific actions that would lead to significant improvements in detection probability. These include astronomical observations (especially for unknown orbital periods), improvements in data analysis algorithms and capabilities, and further detector development.</description><subject>accretion</subject><subject>accretion discs</subject><subject>Accretion disks</subject><subject>accretion, accretion discs</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>gravitational waves</subject><subject>Gravity</subject><subject>Neutrons</subject><subject>Stars & galaxies</subject><subject>stars: neutron</subject><subject>stars: rotation</subject><subject>X-rays: binaries</subject><subject>X-rays: bursts</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkF1P2zAYha1pSHSw_xBN2u5S_BE7zs2kARsgFRDVEJeW47xmKWlSbIeWf4_ToF5MIOEb-5Wfc3x8EEoInpK4jhZTwgRPaSHElGIs48iLbLr5hCa7i89ogjHjqcwJ2UdfvF9gjDNGxQTNTiGACXV7n9w7_VQHHequ1U2y1k-QwLL2Ps6Jdd0yCf8geWi7dZtoYxxsRS30wUXAB-38IdqzuvHw9XU_QLd_fv89OU9n12cXJ79mqRHx3VRXVUmNhEIwURpuTWnzXPPCUknLwsRkAipaVlAZDVVlCmk5MF6VeUmsLAt2gH6MvivXPfbgg4o5DTSNbqHrvaIEM4a5iOC3_8BF17v4vcjgnOVEZDJCcoSM67x3YNXK1UvtnhXBauhYLdRQpRqqVEPHatux2kTp91d_7Y1urNOtqf1OT7EgMsuGwD9Hbl038Pxhf3V5Nd8eowEbDbp-9Y48fSteOqpqH2Cz02n3oET8PVd3V2dqfsxv5uTuVN2wF-Zvr98</recordid><startdate>20080911</startdate><enddate>20080911</enddate><creator>Watts, Anna L.</creator><creator>Krishnan, Badri</creator><creator>Bildsten, Lars</creator><creator>Schutz, Bernard F.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20080911</creationdate><title>Detecting gravitational wave emission from the known accreting neutron stars</title><author>Watts, Anna L. ; Krishnan, Badri ; Bildsten, Lars ; Schutz, Bernard F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6004-addb2c8e9636bc5fcbf77a59f282b9c0436ed2bdedcaeddc98f5e35db7b1f8b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>accretion</topic><topic>accretion discs</topic><topic>Accretion disks</topic><topic>accretion, accretion discs</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>gravitational waves</topic><topic>Gravity</topic><topic>Neutrons</topic><topic>Stars & galaxies</topic><topic>stars: neutron</topic><topic>stars: rotation</topic><topic>X-rays: binaries</topic><topic>X-rays: bursts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watts, Anna L.</creatorcontrib><creatorcontrib>Krishnan, Badri</creatorcontrib><creatorcontrib>Bildsten, Lars</creatorcontrib><creatorcontrib>Schutz, Bernard F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watts, Anna L.</au><au>Krishnan, Badri</au><au>Bildsten, Lars</au><au>Schutz, Bernard F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting gravitational wave emission from the known accreting neutron stars</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Monthly Notices of the Royal Astronomical Society</stitle><date>2008-09-11</date><risdate>2008</risdate><volume>389</volume><issue>2</issue><spage>839</spage><epage>868</epage><pages>839-868</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><coden>MNRAA4</coden><abstract>Detection of gravitational waves from accreting neutron stars (NSs) in our Galaxy, due to ellipticity or internal oscillation, would be a breakthrough in our understanding of compact objects and explain the absence of NSs rotating near the break-up limit. Direct detection, however, poses a formidable challenge. Using the current data available on the properties of the accreting NSs in low-mass X-ray binaries (LMXBs), we quantify the detectability for the known accreting NSs, considering various emission scenarios and taking into account the negative impact of parameter uncertainty on the data analysis process. Only a few of the persistently bright NSs accreting at rates near the Eddington limit are detectable by Advanced LIGO if they are emitting gravitational waves at a rate matching the torque from accretion. A larger fraction of the known population is detectable if the spin and orbital parameters are known in advance, especially with the narrow-band Advanced LIGO. We identify the most promising targets, and list specific actions that would lead to significant improvements in detection probability. These include astronomical observations (especially for unknown orbital periods), improvements in data analysis algorithms and capabilities, and further detector development.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2966.2008.13594.x</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2008-09, Vol.389 (2), p.839-868 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_21033056 |
source | Oxford Journals Open Access Collection; Wiley Online Library Journals Frontfile Complete |
subjects | accretion accretion discs Accretion disks accretion, accretion discs Astronomy Astrophysics Earth, ocean, space Exact sciences and technology gravitational waves Gravity Neutrons Stars & galaxies stars: neutron stars: rotation X-rays: binaries X-rays: bursts |
title | Detecting gravitational wave emission from the known accreting neutron stars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20gravitational%20wave%20emission%20from%20the%20known%20accreting%20neutron%20stars&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Watts,%20Anna%20L.&rft.date=2008-09-11&rft.volume=389&rft.issue=2&rft.spage=839&rft.epage=868&rft.pages=839-868&rft.issn=0035-8711&rft.eissn=1365-2966&rft.coden=MNRAA4&rft_id=info:doi/10.1111/j.1365-2966.2008.13594.x&rft_dat=%3Cproquest_cross%3E1548682941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=207371648&rft_id=info:pmid/&rft_oup_id=10.1111/j.1365-2966.2008.13594.x&rfr_iscdi=true |