Progress in the development of olfactory-based bioelectronic chemosensors

Artificial chemosensory devices have a wide range of applications in industry, security, and medicine. The development of these devices has been inspired by the speed, sensitivity, and selectivity by which the olfactory system in animals can probe the chemical nature of the environment. In this revi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2019-01, Vol.123, p.211-222
Hauptverfasser: Cave, John W., Wickiser, J. Kenneth, Mitropoulos, Alexander N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 222
container_issue
container_start_page 211
container_title Biosensors & bioelectronics
container_volume 123
creator Cave, John W.
Wickiser, J. Kenneth
Mitropoulos, Alexander N.
description Artificial chemosensory devices have a wide range of applications in industry, security, and medicine. The development of these devices has been inspired by the speed, sensitivity, and selectivity by which the olfactory system in animals can probe the chemical nature of the environment. In this review, we examine how molecular and cellular components of natural olfactory systems have been incorporated into artificial chemosensors, or bioelectronic sensors. We focus on the biological material that has been combined with signal transduction systems to develop artificial chemosensory devices. The strengths and limitations of different biological chemosensory material at the heart of these devices, as well as the reported overall effectiveness of the different bioelectronic sensor designs, is examined. This review also discusses future directions and challenges for continuing to advance development of bioelectronic sensors. •Progress to identify suitable olfactory biological material for detector systems has been made.•Live cell-based sensors provide longer-term monitoring capability.•It is likely that no one cell type or species is ideal for bioelectronic chemosensory devices.•Efforts to deorphanize ORs will expand cell-based sensors to probe the chemical environment.
doi_str_mv 10.1016/j.bios.2018.08.063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2102339125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566318306705</els_id><sourcerecordid>2102339125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-fee716bf1cf302502b40b06f1dcd89377e99c6d45b9f3572b9d569bffe597d6f3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMotlb_gAuZpZsZ82gyDbgR8VEo6ELXYZLc2JSZSU2mhf57U1pdCgfu5pxz7_0Quia4IpiIu1WlfUgVxWRW4SzBTtCYzGpWTinjp2iMJRclF4KN0EVKK4xxTSQ-RyOGc4gxNkbz9xi-IqRU-L4YllBY2EIb1h30QxFcEVrXmCHEXambBLbIG6EFM8TQe1OYJXQhQZ9CTJfozDVtgqvjnKDP56ePx9dy8fYyf3xYlGYqxFA6gJoI7Yhx-QqOqZ5ijYUj1tiZZHUNUhphp1xLx3hNtbRcSO0ccFlb4dgE3R561zF8byANqvPJQNs2PYRNUpRgypgklGcrPVhNDClFcGodfdfEnSJY7RGqldojVHuECmcJlkM3x_6N7sD-RX6ZZcP9wQD5y62HqJLx0BuwPmYyygb_X_8PzQ6DaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102339125</pqid></control><display><type>article</type><title>Progress in the development of olfactory-based bioelectronic chemosensors</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Cave, John W. ; Wickiser, J. Kenneth ; Mitropoulos, Alexander N.</creator><creatorcontrib>Cave, John W. ; Wickiser, J. Kenneth ; Mitropoulos, Alexander N.</creatorcontrib><description>Artificial chemosensory devices have a wide range of applications in industry, security, and medicine. The development of these devices has been inspired by the speed, sensitivity, and selectivity by which the olfactory system in animals can probe the chemical nature of the environment. In this review, we examine how molecular and cellular components of natural olfactory systems have been incorporated into artificial chemosensors, or bioelectronic sensors. We focus on the biological material that has been combined with signal transduction systems to develop artificial chemosensory devices. The strengths and limitations of different biological chemosensory material at the heart of these devices, as well as the reported overall effectiveness of the different bioelectronic sensor designs, is examined. This review also discusses future directions and challenges for continuing to advance development of bioelectronic sensors. •Progress to identify suitable olfactory biological material for detector systems has been made.•Live cell-based sensors provide longer-term monitoring capability.•It is likely that no one cell type or species is ideal for bioelectronic chemosensory devices.•Efforts to deorphanize ORs will expand cell-based sensors to probe the chemical environment.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2018.08.063</identifier><identifier>PMID: 30201333</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Bioelectronic nose ; Biosensing Techniques ; Biosensor ; Chemosensor ; Electronic Nose ; Humans ; Odorant binding protein ; Odorant receptor ; Odorants - analysis ; Olfaction ; Receptors, Odorant - chemistry ; Receptors, Odorant - genetics ; Smell - genetics</subject><ispartof>Biosensors &amp; bioelectronics, 2019-01, Vol.123, p.211-222</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright © 2018 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-fee716bf1cf302502b40b06f1dcd89377e99c6d45b9f3572b9d569bffe597d6f3</citedby><cites>FETCH-LOGICAL-c466t-fee716bf1cf302502b40b06f1dcd89377e99c6d45b9f3572b9d569bffe597d6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bios.2018.08.063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30201333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cave, John W.</creatorcontrib><creatorcontrib>Wickiser, J. Kenneth</creatorcontrib><creatorcontrib>Mitropoulos, Alexander N.</creatorcontrib><title>Progress in the development of olfactory-based bioelectronic chemosensors</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Artificial chemosensory devices have a wide range of applications in industry, security, and medicine. The development of these devices has been inspired by the speed, sensitivity, and selectivity by which the olfactory system in animals can probe the chemical nature of the environment. In this review, we examine how molecular and cellular components of natural olfactory systems have been incorporated into artificial chemosensors, or bioelectronic sensors. We focus on the biological material that has been combined with signal transduction systems to develop artificial chemosensory devices. The strengths and limitations of different biological chemosensory material at the heart of these devices, as well as the reported overall effectiveness of the different bioelectronic sensor designs, is examined. This review also discusses future directions and challenges for continuing to advance development of bioelectronic sensors. •Progress to identify suitable olfactory biological material for detector systems has been made.•Live cell-based sensors provide longer-term monitoring capability.•It is likely that no one cell type or species is ideal for bioelectronic chemosensory devices.•Efforts to deorphanize ORs will expand cell-based sensors to probe the chemical environment.</description><subject>Bioelectronic nose</subject><subject>Biosensing Techniques</subject><subject>Biosensor</subject><subject>Chemosensor</subject><subject>Electronic Nose</subject><subject>Humans</subject><subject>Odorant binding protein</subject><subject>Odorant receptor</subject><subject>Odorants - analysis</subject><subject>Olfaction</subject><subject>Receptors, Odorant - chemistry</subject><subject>Receptors, Odorant - genetics</subject><subject>Smell - genetics</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLAzEUhYMotlb_gAuZpZsZ82gyDbgR8VEo6ELXYZLc2JSZSU2mhf57U1pdCgfu5pxz7_0Quia4IpiIu1WlfUgVxWRW4SzBTtCYzGpWTinjp2iMJRclF4KN0EVKK4xxTSQ-RyOGc4gxNkbz9xi-IqRU-L4YllBY2EIb1h30QxFcEVrXmCHEXambBLbIG6EFM8TQe1OYJXQhQZ9CTJfozDVtgqvjnKDP56ePx9dy8fYyf3xYlGYqxFA6gJoI7Yhx-QqOqZ5ijYUj1tiZZHUNUhphp1xLx3hNtbRcSO0ccFlb4dgE3R561zF8byANqvPJQNs2PYRNUpRgypgklGcrPVhNDClFcGodfdfEnSJY7RGqldojVHuECmcJlkM3x_6N7sD-RX6ZZcP9wQD5y62HqJLx0BuwPmYyygb_X_8PzQ6DaQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Cave, John W.</creator><creator>Wickiser, J. Kenneth</creator><creator>Mitropoulos, Alexander N.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190101</creationdate><title>Progress in the development of olfactory-based bioelectronic chemosensors</title><author>Cave, John W. ; Wickiser, J. Kenneth ; Mitropoulos, Alexander N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-fee716bf1cf302502b40b06f1dcd89377e99c6d45b9f3572b9d569bffe597d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bioelectronic nose</topic><topic>Biosensing Techniques</topic><topic>Biosensor</topic><topic>Chemosensor</topic><topic>Electronic Nose</topic><topic>Humans</topic><topic>Odorant binding protein</topic><topic>Odorant receptor</topic><topic>Odorants - analysis</topic><topic>Olfaction</topic><topic>Receptors, Odorant - chemistry</topic><topic>Receptors, Odorant - genetics</topic><topic>Smell - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cave, John W.</creatorcontrib><creatorcontrib>Wickiser, J. Kenneth</creatorcontrib><creatorcontrib>Mitropoulos, Alexander N.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cave, John W.</au><au>Wickiser, J. Kenneth</au><au>Mitropoulos, Alexander N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress in the development of olfactory-based bioelectronic chemosensors</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>123</volume><spage>211</spage><epage>222</epage><pages>211-222</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Artificial chemosensory devices have a wide range of applications in industry, security, and medicine. The development of these devices has been inspired by the speed, sensitivity, and selectivity by which the olfactory system in animals can probe the chemical nature of the environment. In this review, we examine how molecular and cellular components of natural olfactory systems have been incorporated into artificial chemosensors, or bioelectronic sensors. We focus on the biological material that has been combined with signal transduction systems to develop artificial chemosensory devices. The strengths and limitations of different biological chemosensory material at the heart of these devices, as well as the reported overall effectiveness of the different bioelectronic sensor designs, is examined. This review also discusses future directions and challenges for continuing to advance development of bioelectronic sensors. •Progress to identify suitable olfactory biological material for detector systems has been made.•Live cell-based sensors provide longer-term monitoring capability.•It is likely that no one cell type or species is ideal for bioelectronic chemosensory devices.•Efforts to deorphanize ORs will expand cell-based sensors to probe the chemical environment.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>30201333</pmid><doi>10.1016/j.bios.2018.08.063</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2019-01, Vol.123, p.211-222
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_2102339125
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Bioelectronic nose
Biosensing Techniques
Biosensor
Chemosensor
Electronic Nose
Humans
Odorant binding protein
Odorant receptor
Odorants - analysis
Olfaction
Receptors, Odorant - chemistry
Receptors, Odorant - genetics
Smell - genetics
title Progress in the development of olfactory-based bioelectronic chemosensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T04%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20in%20the%20development%20of%20olfactory-based%20bioelectronic%20chemosensors&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Cave,%20John%20W.&rft.date=2019-01-01&rft.volume=123&rft.spage=211&rft.epage=222&rft.pages=211-222&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2018.08.063&rft_dat=%3Cproquest_cross%3E2102339125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102339125&rft_id=info:pmid/30201333&rft_els_id=S0956566318306705&rfr_iscdi=true