Multiobjective strain design: A framework for modular cell engineering
Diversity of cellular metabolism can be harnessed to produce a large space of molecules. However, development of optimal strains with high product titers, rates, and yields required for industrial production is laborious and expensive. To accelerate the strain engineering process, we have recently i...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2019-01, Vol.51, p.110-120 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | |
container_start_page | 110 |
container_title | Metabolic engineering |
container_volume | 51 |
creator | Garcia, Sergio Trinh, Cong T. |
description | Diversity of cellular metabolism can be harnessed to produce a large space of molecules. However, development of optimal strains with high product titers, rates, and yields required for industrial production is laborious and expensive. To accelerate the strain engineering process, we have recently introduced a modular cell design concept that enables rapid generation of optimal production strains by systematically assembling a modular cell with an exchangeable production module(s) to produce target molecules efficiently. In this study, we formulated the modular cell design concept as a general multiobjective optimization problem with flexible design objectives derived from mass balance. We developed algorithms and an associated software package, named ModCell2, to implement the design. We demonstrated that ModCell2 can systematically identify genetic modifications to design modular cells that can couple with a variety of production modules and exhibit a minimal tradeoff among modularity, performance, and robustness. Analysis of the modular cell designs revealed both intuitive and complex metabolic architectures enabling modular production of these molecules. We envision ModCell2 provides a powerful tool to guide modular cell engineering and sheds light on modular design principles of biological systems.
•Formulate modular cell design as a multiobjective optimization problem.•Develop algorithm and computational platform, ModCell2, to streamline modular cell design.•Demonstrate ModCell2 to design modular cells using genome-scale E. coli metabolic model.•Show modular cells exhibit minimal tradeoff among modularity, performance, and robustness.•Reveal intuitive and complex metabolic architectures enabling modular design. |
doi_str_mv | 10.1016/j.ymben.2018.09.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2102339079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717618302519</els_id><sourcerecordid>2102339079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-c16330da31c7a85f18b109dac67cd35a76ba0153287c0963b566fe75ba6e660d3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EoqXwBEgoRy4J6zhxEiQOVUUBqYgLnC3H3lQu-Sl2UtS3x6WlR067h5md2Y-QawoRBcrvVtG2KbGNYqB5BEUEwE7ImELBw4zmyelxz_iIXDi3AqA0Leg5GTHwJkaTMZm_DnVvunKFqjcbDFxvpWkDjc4s2_tgGlRWNvjd2c-g6mzQdHqopQ0U1nWA7dK0iNa0y0tyVsna4dVhTsjH_PF99hwu3p5eZtNFqBJI-lBRzhhoyajKZJ5WNC99Ry0Vz5Rmqcx4KYGmLM4z5buzMuW8wiwtJUfOQbMJud3fXdvua0DXi8a4XRnZYjc4EVOIGSsgK7yU7aXKds5ZrMTamkbaraAgdgDFSvwCFDuAAgrhAXrXzSFgKBvUR88fMS942AvQv7kxaIVTBluF2ljPUOjO_BvwA18TgiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102339079</pqid></control><display><type>article</type><title>Multiobjective strain design: A framework for modular cell engineering</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Garcia, Sergio ; Trinh, Cong T.</creator><creatorcontrib>Garcia, Sergio ; Trinh, Cong T.</creatorcontrib><description>Diversity of cellular metabolism can be harnessed to produce a large space of molecules. However, development of optimal strains with high product titers, rates, and yields required for industrial production is laborious and expensive. To accelerate the strain engineering process, we have recently introduced a modular cell design concept that enables rapid generation of optimal production strains by systematically assembling a modular cell with an exchangeable production module(s) to produce target molecules efficiently. In this study, we formulated the modular cell design concept as a general multiobjective optimization problem with flexible design objectives derived from mass balance. We developed algorithms and an associated software package, named ModCell2, to implement the design. We demonstrated that ModCell2 can systematically identify genetic modifications to design modular cells that can couple with a variety of production modules and exhibit a minimal tradeoff among modularity, performance, and robustness. Analysis of the modular cell designs revealed both intuitive and complex metabolic architectures enabling modular production of these molecules. We envision ModCell2 provides a powerful tool to guide modular cell engineering and sheds light on modular design principles of biological systems.
•Formulate modular cell design as a multiobjective optimization problem.•Develop algorithm and computational platform, ModCell2, to streamline modular cell design.•Demonstrate ModCell2 to design modular cells using genome-scale E. coli metabolic model.•Show modular cells exhibit minimal tradeoff among modularity, performance, and robustness.•Reveal intuitive and complex metabolic architectures enabling modular design.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2018.09.003</identifier><identifier>PMID: 30201314</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Modular cell ; Modular cell engineering ; Modular design ; Modularity ; Multiobjective evolutionary algorithms ; Multiobjective optimization ; Production modules</subject><ispartof>Metabolic engineering, 2019-01, Vol.51, p.110-120</ispartof><rights>2018 International Metabolic Engineering Society</rights><rights>Copyright © 2018 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-c16330da31c7a85f18b109dac67cd35a76ba0153287c0963b566fe75ba6e660d3</citedby><cites>FETCH-LOGICAL-c404t-c16330da31c7a85f18b109dac67cd35a76ba0153287c0963b566fe75ba6e660d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096717618302519$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30201314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia, Sergio</creatorcontrib><creatorcontrib>Trinh, Cong T.</creatorcontrib><title>Multiobjective strain design: A framework for modular cell engineering</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Diversity of cellular metabolism can be harnessed to produce a large space of molecules. However, development of optimal strains with high product titers, rates, and yields required for industrial production is laborious and expensive. To accelerate the strain engineering process, we have recently introduced a modular cell design concept that enables rapid generation of optimal production strains by systematically assembling a modular cell with an exchangeable production module(s) to produce target molecules efficiently. In this study, we formulated the modular cell design concept as a general multiobjective optimization problem with flexible design objectives derived from mass balance. We developed algorithms and an associated software package, named ModCell2, to implement the design. We demonstrated that ModCell2 can systematically identify genetic modifications to design modular cells that can couple with a variety of production modules and exhibit a minimal tradeoff among modularity, performance, and robustness. Analysis of the modular cell designs revealed both intuitive and complex metabolic architectures enabling modular production of these molecules. We envision ModCell2 provides a powerful tool to guide modular cell engineering and sheds light on modular design principles of biological systems.
•Formulate modular cell design as a multiobjective optimization problem.•Develop algorithm and computational platform, ModCell2, to streamline modular cell design.•Demonstrate ModCell2 to design modular cells using genome-scale E. coli metabolic model.•Show modular cells exhibit minimal tradeoff among modularity, performance, and robustness.•Reveal intuitive and complex metabolic architectures enabling modular design.</description><subject>Modular cell</subject><subject>Modular cell engineering</subject><subject>Modular design</subject><subject>Modularity</subject><subject>Multiobjective evolutionary algorithms</subject><subject>Multiobjective optimization</subject><subject>Production modules</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EoqXwBEgoRy4J6zhxEiQOVUUBqYgLnC3H3lQu-Sl2UtS3x6WlR067h5md2Y-QawoRBcrvVtG2KbGNYqB5BEUEwE7ImELBw4zmyelxz_iIXDi3AqA0Leg5GTHwJkaTMZm_DnVvunKFqjcbDFxvpWkDjc4s2_tgGlRWNvjd2c-g6mzQdHqopQ0U1nWA7dK0iNa0y0tyVsna4dVhTsjH_PF99hwu3p5eZtNFqBJI-lBRzhhoyajKZJ5WNC99Ry0Vz5Rmqcx4KYGmLM4z5buzMuW8wiwtJUfOQbMJud3fXdvua0DXi8a4XRnZYjc4EVOIGSsgK7yU7aXKds5ZrMTamkbaraAgdgDFSvwCFDuAAgrhAXrXzSFgKBvUR88fMS942AvQv7kxaIVTBluF2ljPUOjO_BvwA18TgiM</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Garcia, Sergio</creator><creator>Trinh, Cong T.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201901</creationdate><title>Multiobjective strain design: A framework for modular cell engineering</title><author>Garcia, Sergio ; Trinh, Cong T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-c16330da31c7a85f18b109dac67cd35a76ba0153287c0963b566fe75ba6e660d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Modular cell</topic><topic>Modular cell engineering</topic><topic>Modular design</topic><topic>Modularity</topic><topic>Multiobjective evolutionary algorithms</topic><topic>Multiobjective optimization</topic><topic>Production modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Sergio</creatorcontrib><creatorcontrib>Trinh, Cong T.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Sergio</au><au>Trinh, Cong T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective strain design: A framework for modular cell engineering</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2019-01</date><risdate>2019</risdate><volume>51</volume><spage>110</spage><epage>120</epage><pages>110-120</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Diversity of cellular metabolism can be harnessed to produce a large space of molecules. However, development of optimal strains with high product titers, rates, and yields required for industrial production is laborious and expensive. To accelerate the strain engineering process, we have recently introduced a modular cell design concept that enables rapid generation of optimal production strains by systematically assembling a modular cell with an exchangeable production module(s) to produce target molecules efficiently. In this study, we formulated the modular cell design concept as a general multiobjective optimization problem with flexible design objectives derived from mass balance. We developed algorithms and an associated software package, named ModCell2, to implement the design. We demonstrated that ModCell2 can systematically identify genetic modifications to design modular cells that can couple with a variety of production modules and exhibit a minimal tradeoff among modularity, performance, and robustness. Analysis of the modular cell designs revealed both intuitive and complex metabolic architectures enabling modular production of these molecules. We envision ModCell2 provides a powerful tool to guide modular cell engineering and sheds light on modular design principles of biological systems.
•Formulate modular cell design as a multiobjective optimization problem.•Develop algorithm and computational platform, ModCell2, to streamline modular cell design.•Demonstrate ModCell2 to design modular cells using genome-scale E. coli metabolic model.•Show modular cells exhibit minimal tradeoff among modularity, performance, and robustness.•Reveal intuitive and complex metabolic architectures enabling modular design.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>30201314</pmid><doi>10.1016/j.ymben.2018.09.003</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2019-01, Vol.51, p.110-120 |
issn | 1096-7176 1096-7184 |
language | eng |
recordid | cdi_proquest_miscellaneous_2102339079 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Modular cell Modular cell engineering Modular design Modularity Multiobjective evolutionary algorithms Multiobjective optimization Production modules |
title | Multiobjective strain design: A framework for modular cell engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20strain%20design:%20A%20framework%20for%20modular%20cell%20engineering&rft.jtitle=Metabolic%20engineering&rft.au=Garcia,%20Sergio&rft.date=2019-01&rft.volume=51&rft.spage=110&rft.epage=120&rft.pages=110-120&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2018.09.003&rft_dat=%3Cproquest_cross%3E2102339079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2102339079&rft_id=info:pmid/30201314&rft_els_id=S1096717618302519&rfr_iscdi=true |