Rare‐Earth Metal(II) Aryloxides: Structure, Synthesis, and EPR Spectroscopy of [K(2.2.2‐cryptand)][Sc(OC6H2tBu2‐2,6‐Me‐4)3]

The suitability of aryloxide ligands for stabilizing +2 oxidation states of Sc and Y has been examined and EPR evidence indicating the first O‐donor complexes of ScII and YII has been obtained, as well as an X‐ray crystal structure of a ScII aryloxide complex. The trivalent rare‐earth metal aryloxid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2018-12, Vol.24 (68), p.18059-18067
Hauptverfasser: Moehring, Samuel A., Beltrán‐Leiva, María J., Páez‐Hernández, Dayán, Arratia‐Pérez, Ramiro, Ziller, Joseph W., Evans, William J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18067
container_issue 68
container_start_page 18059
container_title Chemistry : a European journal
container_volume 24
creator Moehring, Samuel A.
Beltrán‐Leiva, María J.
Páez‐Hernández, Dayán
Arratia‐Pérez, Ramiro
Ziller, Joseph W.
Evans, William J.
description The suitability of aryloxide ligands for stabilizing +2 oxidation states of Sc and Y has been examined and EPR evidence indicating the first O‐donor complexes of ScII and YII has been obtained, as well as an X‐ray crystal structure of a ScII aryloxide complex. The trivalent rare‐earth metal aryloxide precursors, Ln(OAr′)3, 1‐Ln (Ln=Sc, Y, Gd, Dy, Ho, Er; OAr′=OC6H2tBu2‐2,6‐Me‐4), were synthesized from the corresponding rare‐earth metal trichlorides and LiOAr′⋅OEt2. Reduction of THF solutions of 1‐Ln with potassium graphite in the presence of 2.2.2‐cryptand (crypt) yielded dark‐colored solutions, 2‐Ln, whose EPR spectra at 77 K are characteristic of the LnII ions: a two‐line spectrum (g∥=1.99, g□=1.97, Aave=154 G) for 2‐Y and an eight‐line spectrum (gave=2.01 and Aave=291 G) for 2‐Sc. Solutions of 2‐Y decompose within one minute at room temperature, wheras 2‐Sc persists up to 40 min at room temperature. 2‐Sc was identified by X‐ray crystallography as [K(crypt)][Sc(OAr′)3], which has a trigonal‐planar arrangement of oxygen‐donor atoms around ScII. Analogous reductions of 1‐Ln for Ln=Gd, Dy, Ho, and Er also gave dark solutions of limited stability. Theoretical analysis using time‐dependent density functional theory (TD‐DFT) along with complete active space self‐consistent field (CASSCF) methods, and structural analysis with the Guzei ligand solid angle G‐parameter method are presented. Definitive EPR: A long‐known ligand broadens the scope of LnII chemistry! A bulky aryloxide ligand supports the second example of a crystallographically‐characterized ScII complex. TD‐DFT calculations, EPR, and UV/Visible spectroscopy are consistent with the existence of other LnII aryloxides whose steric undersaturation may contribute to their thermal instability.
doi_str_mv 10.1002/chem.201803807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2102321133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102321133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4507-34985fda753b12072d7176c36ebec50c40ecc36023cd2f14abcf1b69280320ea3</originalsourceid><addsrcrecordid>eNqFkUFr2zAUx8XYWLNu1x2HYJcE4uxJsuyoty5kS1hDR7OdSjGy_ExcnNiTZFbfetl9n7GfpAppO-hlCCSEfu_3xPsT8p7BhAHwT2aD2wkHNgUxhfQFGTDJWSTSRL4kA1BxGiVSqCPyxrlrAFCJEK_JkQCmlJzKAflzoS3e3f6da-s3dIVe18PlckRPbV83N1WB7oSuve2M7yyO6brf-Q26yo2p3hV0_v2Crls03jbONG1Pm5JefhvySVhBamzf-sCNri7XZng-Sxbcf-72L3ychH217xyPxNVb8qrUtcN3D-cx-fll_mO2iM7Ovy5np2eRiSWkkYjVVJaFTqXIGYeUFylLEyMSzNFIMDGgCTfgwhS8ZLHOTcnyRPEwHQ6oxTEZHrytbX516Hy2rZzButY7bDqXcRZqOWNCBPTjM_S66ewu_C5QUgJXIFWgJgfKhAk4i2XW2mqrbZ8xyPYBZfuAsqeAQsGHB22Xb7F4wh8TCYA6AL-rGvv_6LLZYr76J78HSqedaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2155029059</pqid></control><display><type>article</type><title>Rare‐Earth Metal(II) Aryloxides: Structure, Synthesis, and EPR Spectroscopy of [K(2.2.2‐cryptand)][Sc(OC6H2tBu2‐2,6‐Me‐4)3]</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Moehring, Samuel A. ; Beltrán‐Leiva, María J. ; Páez‐Hernández, Dayán ; Arratia‐Pérez, Ramiro ; Ziller, Joseph W. ; Evans, William J.</creator><creatorcontrib>Moehring, Samuel A. ; Beltrán‐Leiva, María J. ; Páez‐Hernández, Dayán ; Arratia‐Pérez, Ramiro ; Ziller, Joseph W. ; Evans, William J.</creatorcontrib><description>The suitability of aryloxide ligands for stabilizing +2 oxidation states of Sc and Y has been examined and EPR evidence indicating the first O‐donor complexes of ScII and YII has been obtained, as well as an X‐ray crystal structure of a ScII aryloxide complex. The trivalent rare‐earth metal aryloxide precursors, Ln(OAr′)3, 1‐Ln (Ln=Sc, Y, Gd, Dy, Ho, Er; OAr′=OC6H2tBu2‐2,6‐Me‐4), were synthesized from the corresponding rare‐earth metal trichlorides and LiOAr′⋅OEt2. Reduction of THF solutions of 1‐Ln with potassium graphite in the presence of 2.2.2‐cryptand (crypt) yielded dark‐colored solutions, 2‐Ln, whose EPR spectra at 77 K are characteristic of the LnII ions: a two‐line spectrum (g∥=1.99, g□=1.97, Aave=154 G) for 2‐Y and an eight‐line spectrum (gave=2.01 and Aave=291 G) for 2‐Sc. Solutions of 2‐Y decompose within one minute at room temperature, wheras 2‐Sc persists up to 40 min at room temperature. 2‐Sc was identified by X‐ray crystallography as [K(crypt)][Sc(OAr′)3], which has a trigonal‐planar arrangement of oxygen‐donor atoms around ScII. Analogous reductions of 1‐Ln for Ln=Gd, Dy, Ho, and Er also gave dark solutions of limited stability. Theoretical analysis using time‐dependent density functional theory (TD‐DFT) along with complete active space self‐consistent field (CASSCF) methods, and structural analysis with the Guzei ligand solid angle G‐parameter method are presented. Definitive EPR: A long‐known ligand broadens the scope of LnII chemistry! A bulky aryloxide ligand supports the second example of a crystallographically‐characterized ScII complex. TD‐DFT calculations, EPR, and UV/Visible spectroscopy are consistent with the existence of other LnII aryloxides whose steric undersaturation may contribute to their thermal instability.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201803807</identifier><identifier>PMID: 30199585</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>aryloxides ; Chemistry ; Chlorides ; Coordination compounds ; Crystal structure ; Crystallography ; Density functional theory ; Dysprosium ; Earth ; Erbium ; Gadolinium ; Ligands ; low-valent metals ; Metals ; Oxidation ; Potassium ; rare-earth metals ; reduction ; scandium ; Spectroscopy ; Spectrum analysis ; Stability analysis ; Structural analysis ; Temperature ; Theoretical analysis ; Time dependence ; Yttrium</subject><ispartof>Chemistry : a European journal, 2018-12, Vol.24 (68), p.18059-18067</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4507-34985fda753b12072d7176c36ebec50c40ecc36023cd2f14abcf1b69280320ea3</citedby><cites>FETCH-LOGICAL-c4507-34985fda753b12072d7176c36ebec50c40ecc36023cd2f14abcf1b69280320ea3</cites><orcidid>0000-0003-3221-3118 ; 0000-0002-0651-418X ; 0000-0002-6619-7737 ; 0000-0001-7404-950X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201803807$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201803807$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30199585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Moehring, Samuel A.</creatorcontrib><creatorcontrib>Beltrán‐Leiva, María J.</creatorcontrib><creatorcontrib>Páez‐Hernández, Dayán</creatorcontrib><creatorcontrib>Arratia‐Pérez, Ramiro</creatorcontrib><creatorcontrib>Ziller, Joseph W.</creatorcontrib><creatorcontrib>Evans, William J.</creatorcontrib><title>Rare‐Earth Metal(II) Aryloxides: Structure, Synthesis, and EPR Spectroscopy of [K(2.2.2‐cryptand)][Sc(OC6H2tBu2‐2,6‐Me‐4)3]</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>The suitability of aryloxide ligands for stabilizing +2 oxidation states of Sc and Y has been examined and EPR evidence indicating the first O‐donor complexes of ScII and YII has been obtained, as well as an X‐ray crystal structure of a ScII aryloxide complex. The trivalent rare‐earth metal aryloxide precursors, Ln(OAr′)3, 1‐Ln (Ln=Sc, Y, Gd, Dy, Ho, Er; OAr′=OC6H2tBu2‐2,6‐Me‐4), were synthesized from the corresponding rare‐earth metal trichlorides and LiOAr′⋅OEt2. Reduction of THF solutions of 1‐Ln with potassium graphite in the presence of 2.2.2‐cryptand (crypt) yielded dark‐colored solutions, 2‐Ln, whose EPR spectra at 77 K are characteristic of the LnII ions: a two‐line spectrum (g∥=1.99, g□=1.97, Aave=154 G) for 2‐Y and an eight‐line spectrum (gave=2.01 and Aave=291 G) for 2‐Sc. Solutions of 2‐Y decompose within one minute at room temperature, wheras 2‐Sc persists up to 40 min at room temperature. 2‐Sc was identified by X‐ray crystallography as [K(crypt)][Sc(OAr′)3], which has a trigonal‐planar arrangement of oxygen‐donor atoms around ScII. Analogous reductions of 1‐Ln for Ln=Gd, Dy, Ho, and Er also gave dark solutions of limited stability. Theoretical analysis using time‐dependent density functional theory (TD‐DFT) along with complete active space self‐consistent field (CASSCF) methods, and structural analysis with the Guzei ligand solid angle G‐parameter method are presented. Definitive EPR: A long‐known ligand broadens the scope of LnII chemistry! A bulky aryloxide ligand supports the second example of a crystallographically‐characterized ScII complex. TD‐DFT calculations, EPR, and UV/Visible spectroscopy are consistent with the existence of other LnII aryloxides whose steric undersaturation may contribute to their thermal instability.</description><subject>aryloxides</subject><subject>Chemistry</subject><subject>Chlorides</subject><subject>Coordination compounds</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Density functional theory</subject><subject>Dysprosium</subject><subject>Earth</subject><subject>Erbium</subject><subject>Gadolinium</subject><subject>Ligands</subject><subject>low-valent metals</subject><subject>Metals</subject><subject>Oxidation</subject><subject>Potassium</subject><subject>rare-earth metals</subject><subject>reduction</subject><subject>scandium</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Structural analysis</subject><subject>Temperature</subject><subject>Theoretical analysis</subject><subject>Time dependence</subject><subject>Yttrium</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUFr2zAUx8XYWLNu1x2HYJcE4uxJsuyoty5kS1hDR7OdSjGy_ExcnNiTZFbfetl9n7GfpAppO-hlCCSEfu_3xPsT8p7BhAHwT2aD2wkHNgUxhfQFGTDJWSTSRL4kA1BxGiVSqCPyxrlrAFCJEK_JkQCmlJzKAflzoS3e3f6da-s3dIVe18PlckRPbV83N1WB7oSuve2M7yyO6brf-Q26yo2p3hV0_v2Crls03jbONG1Pm5JefhvySVhBamzf-sCNri7XZng-Sxbcf-72L3ychH217xyPxNVb8qrUtcN3D-cx-fll_mO2iM7Ovy5np2eRiSWkkYjVVJaFTqXIGYeUFylLEyMSzNFIMDGgCTfgwhS8ZLHOTcnyRPEwHQ6oxTEZHrytbX516Hy2rZzButY7bDqXcRZqOWNCBPTjM_S66ewu_C5QUgJXIFWgJgfKhAk4i2XW2mqrbZ8xyPYBZfuAsqeAQsGHB22Xb7F4wh8TCYA6AL-rGvv_6LLZYr76J78HSqedaQ</recordid><startdate>20181205</startdate><enddate>20181205</enddate><creator>Moehring, Samuel A.</creator><creator>Beltrán‐Leiva, María J.</creator><creator>Páez‐Hernández, Dayán</creator><creator>Arratia‐Pérez, Ramiro</creator><creator>Ziller, Joseph W.</creator><creator>Evans, William J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3221-3118</orcidid><orcidid>https://orcid.org/0000-0002-0651-418X</orcidid><orcidid>https://orcid.org/0000-0002-6619-7737</orcidid><orcidid>https://orcid.org/0000-0001-7404-950X</orcidid></search><sort><creationdate>20181205</creationdate><title>Rare‐Earth Metal(II) Aryloxides: Structure, Synthesis, and EPR Spectroscopy of [K(2.2.2‐cryptand)][Sc(OC6H2tBu2‐2,6‐Me‐4)3]</title><author>Moehring, Samuel A. ; Beltrán‐Leiva, María J. ; Páez‐Hernández, Dayán ; Arratia‐Pérez, Ramiro ; Ziller, Joseph W. ; Evans, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4507-34985fda753b12072d7176c36ebec50c40ecc36023cd2f14abcf1b69280320ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aryloxides</topic><topic>Chemistry</topic><topic>Chlorides</topic><topic>Coordination compounds</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Density functional theory</topic><topic>Dysprosium</topic><topic>Earth</topic><topic>Erbium</topic><topic>Gadolinium</topic><topic>Ligands</topic><topic>low-valent metals</topic><topic>Metals</topic><topic>Oxidation</topic><topic>Potassium</topic><topic>rare-earth metals</topic><topic>reduction</topic><topic>scandium</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Structural analysis</topic><topic>Temperature</topic><topic>Theoretical analysis</topic><topic>Time dependence</topic><topic>Yttrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moehring, Samuel A.</creatorcontrib><creatorcontrib>Beltrán‐Leiva, María J.</creatorcontrib><creatorcontrib>Páez‐Hernández, Dayán</creatorcontrib><creatorcontrib>Arratia‐Pérez, Ramiro</creatorcontrib><creatorcontrib>Ziller, Joseph W.</creatorcontrib><creatorcontrib>Evans, William J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moehring, Samuel A.</au><au>Beltrán‐Leiva, María J.</au><au>Páez‐Hernández, Dayán</au><au>Arratia‐Pérez, Ramiro</au><au>Ziller, Joseph W.</au><au>Evans, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rare‐Earth Metal(II) Aryloxides: Structure, Synthesis, and EPR Spectroscopy of [K(2.2.2‐cryptand)][Sc(OC6H2tBu2‐2,6‐Me‐4)3]</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-12-05</date><risdate>2018</risdate><volume>24</volume><issue>68</issue><spage>18059</spage><epage>18067</epage><pages>18059-18067</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>The suitability of aryloxide ligands for stabilizing +2 oxidation states of Sc and Y has been examined and EPR evidence indicating the first O‐donor complexes of ScII and YII has been obtained, as well as an X‐ray crystal structure of a ScII aryloxide complex. The trivalent rare‐earth metal aryloxide precursors, Ln(OAr′)3, 1‐Ln (Ln=Sc, Y, Gd, Dy, Ho, Er; OAr′=OC6H2tBu2‐2,6‐Me‐4), were synthesized from the corresponding rare‐earth metal trichlorides and LiOAr′⋅OEt2. Reduction of THF solutions of 1‐Ln with potassium graphite in the presence of 2.2.2‐cryptand (crypt) yielded dark‐colored solutions, 2‐Ln, whose EPR spectra at 77 K are characteristic of the LnII ions: a two‐line spectrum (g∥=1.99, g□=1.97, Aave=154 G) for 2‐Y and an eight‐line spectrum (gave=2.01 and Aave=291 G) for 2‐Sc. Solutions of 2‐Y decompose within one minute at room temperature, wheras 2‐Sc persists up to 40 min at room temperature. 2‐Sc was identified by X‐ray crystallography as [K(crypt)][Sc(OAr′)3], which has a trigonal‐planar arrangement of oxygen‐donor atoms around ScII. Analogous reductions of 1‐Ln for Ln=Gd, Dy, Ho, and Er also gave dark solutions of limited stability. Theoretical analysis using time‐dependent density functional theory (TD‐DFT) along with complete active space self‐consistent field (CASSCF) methods, and structural analysis with the Guzei ligand solid angle G‐parameter method are presented. Definitive EPR: A long‐known ligand broadens the scope of LnII chemistry! A bulky aryloxide ligand supports the second example of a crystallographically‐characterized ScII complex. TD‐DFT calculations, EPR, and UV/Visible spectroscopy are consistent with the existence of other LnII aryloxides whose steric undersaturation may contribute to their thermal instability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30199585</pmid><doi>10.1002/chem.201803807</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3221-3118</orcidid><orcidid>https://orcid.org/0000-0002-0651-418X</orcidid><orcidid>https://orcid.org/0000-0002-6619-7737</orcidid><orcidid>https://orcid.org/0000-0001-7404-950X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2018-12, Vol.24 (68), p.18059-18067
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_2102321133
source Wiley Online Library Journals Frontfile Complete
subjects aryloxides
Chemistry
Chlorides
Coordination compounds
Crystal structure
Crystallography
Density functional theory
Dysprosium
Earth
Erbium
Gadolinium
Ligands
low-valent metals
Metals
Oxidation
Potassium
rare-earth metals
reduction
scandium
Spectroscopy
Spectrum analysis
Stability analysis
Structural analysis
Temperature
Theoretical analysis
Time dependence
Yttrium
title Rare‐Earth Metal(II) Aryloxides: Structure, Synthesis, and EPR Spectroscopy of [K(2.2.2‐cryptand)][Sc(OC6H2tBu2‐2,6‐Me‐4)3]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T19%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rare%E2%80%90Earth%20Metal(II)%20Aryloxides:%20Structure,%20Synthesis,%20and%20EPR%20Spectroscopy%20of%20%5BK(2.2.2%E2%80%90cryptand)%5D%5BSc(OC6H2tBu2%E2%80%902,6%E2%80%90Me%E2%80%904)3%5D&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Moehring,%20Samuel%20A.&rft.date=2018-12-05&rft.volume=24&rft.issue=68&rft.spage=18059&rft.epage=18067&rft.pages=18059-18067&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201803807&rft_dat=%3Cproquest_cross%3E2102321133%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2155029059&rft_id=info:pmid/30199585&rfr_iscdi=true