Local discontinuous Galerkin approximations to Richards’ equation
We consider the numerical approximation to Richards’ equation because of its hydrological significance and intrinsic merit as a nonlinear parabolic model that admits sharp fronts in space and time that pose a special challenge to conventional numerical methods. We combine a robust and established va...
Gespeichert in:
Veröffentlicht in: | Advances in water resources 2007-03, Vol.30 (3), p.555-575 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the numerical approximation to Richards’ equation because of its hydrological significance and intrinsic merit as a nonlinear parabolic model that admits sharp fronts in space and time that pose a special challenge to conventional numerical methods. We combine a robust and established variable order, variable step-size backward difference method for time integration with an evolving spatial discretization approach based upon the local discontinuous Galerkin (LDG) method. We formulate the approximation using a method of lines approach to uncouple the time integration from the spatial discretization. The spatial discretization is formulated as a set of four differential algebraic equations, which includes a mass conservation constraint. We demonstrate how this system of equations can be reduced to the solution of a single coupled unknown in space and time and a series of local constraint equations. We examine a variety of approximations at discontinuous element boundaries, permeability approximations, and numerical quadrature schemes. We demonstrate an optimal rate of convergence for smooth problems, and compare accuracy and efficiency for a wide variety of approaches applied to a set of common test problems. We obtain robust and efficient results that improve upon existing methods, and we recommend a future path that should yield significant additional improvements. |
---|---|
ISSN: | 0309-1708 1872-9657 |
DOI: | 10.1016/j.advwatres.2006.04.011 |