Evaporation Mass Flux: A Predictive Model and Experiments

Evaporation is a fundamental and core phenomenon in a broad range of disciplines including power generation and refrigeration systems, desalination, electronic/photonic cooling, aviation systems, and even biosciences. Despite its importance, the current theories on evaporation suffer from fitting co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2018-10, Vol.34 (39), p.11676-11684
Hauptverfasser: Jafari, Parham, Masoudi, Ali, Irajizad, Peyman, Nazari, Masoumeh, Kashyap, Varun, Eslami, Bahareh, Ghasemi, Hadi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11684
container_issue 39
container_start_page 11676
container_title Langmuir
container_volume 34
creator Jafari, Parham
Masoudi, Ali
Irajizad, Peyman
Nazari, Masoumeh
Kashyap, Varun
Eslami, Bahareh
Ghasemi, Hadi
description Evaporation is a fundamental and core phenomenon in a broad range of disciplines including power generation and refrigeration systems, desalination, electronic/photonic cooling, aviation systems, and even biosciences. Despite its importance, the current theories on evaporation suffer from fitting coefficients with reported values varying in a few orders of magnitude. Lack of a sound model impedes simulation and prediction of characteristics of many systems in these disciplines. Here, we studied evaporation at a planar liquid–vapor interface through a custom-designed, controlled, and automated experimental setup. This experimental setup provides the ability to accurately probe thermodynamic properties in vapor, liquid, and close to the liquid–vapor interface. Through analysis of these thermodynamic properties in a wide range of evaporation mass fluxes, we cast a predictive model of evaporation based on nonequilibrium thermodynamics with no fitting parameters. In this model, only the interfacial temperatures of liquid and vapor phases along with the vapor pressure are needed to predict evaporation mass flux. The model was validated by the reported study of an independent research group. The developed model provides a foundation for all liquid–vapor phase change studies including energy, water, and biological systems.
doi_str_mv 10.1021/acs.langmuir.8b02289
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2101277931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101277931</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-8be37af087c56e54bcc15651d10a84469a64e472bd0323d2f69bf3d402b735993</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBwhlySZl_IptdlXVAlIrWMDacmIHpcoLO6navydVW5asZnPunZmD0D2GKQaCn0wWpqWpv6u-8FOZAiFSXaAx5gRiLom4RGMQjMaCJXSEbkLYAICiTF2jEQUspSB4jNRia9rGm65o6mhtQoiWZb97jmbRh3e2yLpi66J1Y10ZmdpGi13rfFG5ugu36Co3ZXB3pzlBX8vF5_w1Xr2_vM1nq9hQybtYpo4Kk4MUGU8cZ2mWYZ5wbDEYyViiTMIcEyS1QAm1JE9UmlPLgKSCcqXoBD0ee1vf_PQudLoqQubK4XfX9EETDJgIoSgeUHZEM9-E4F2u2-FY4_cagz5I04M0fZamT9KG2MNpQ59Wzv6FzpYGAI7AIb5pel8PD__f-QtmAnpn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101277931</pqid></control><display><type>article</type><title>Evaporation Mass Flux: A Predictive Model and Experiments</title><source>American Chemical Society Journals</source><creator>Jafari, Parham ; Masoudi, Ali ; Irajizad, Peyman ; Nazari, Masoumeh ; Kashyap, Varun ; Eslami, Bahareh ; Ghasemi, Hadi</creator><creatorcontrib>Jafari, Parham ; Masoudi, Ali ; Irajizad, Peyman ; Nazari, Masoumeh ; Kashyap, Varun ; Eslami, Bahareh ; Ghasemi, Hadi</creatorcontrib><description>Evaporation is a fundamental and core phenomenon in a broad range of disciplines including power generation and refrigeration systems, desalination, electronic/photonic cooling, aviation systems, and even biosciences. Despite its importance, the current theories on evaporation suffer from fitting coefficients with reported values varying in a few orders of magnitude. Lack of a sound model impedes simulation and prediction of characteristics of many systems in these disciplines. Here, we studied evaporation at a planar liquid–vapor interface through a custom-designed, controlled, and automated experimental setup. This experimental setup provides the ability to accurately probe thermodynamic properties in vapor, liquid, and close to the liquid–vapor interface. Through analysis of these thermodynamic properties in a wide range of evaporation mass fluxes, we cast a predictive model of evaporation based on nonequilibrium thermodynamics with no fitting parameters. In this model, only the interfacial temperatures of liquid and vapor phases along with the vapor pressure are needed to predict evaporation mass flux. The model was validated by the reported study of an independent research group. The developed model provides a foundation for all liquid–vapor phase change studies including energy, water, and biological systems.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.8b02289</identifier><identifier>PMID: 30188721</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2018-10, Vol.34 (39), p.11676-11684</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-8be37af087c56e54bcc15651d10a84469a64e472bd0323d2f69bf3d402b735993</citedby><cites>FETCH-LOGICAL-a385t-8be37af087c56e54bcc15651d10a84469a64e472bd0323d2f69bf3d402b735993</cites><orcidid>0000-0002-0554-4248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.8b02289$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.8b02289$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30188721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jafari, Parham</creatorcontrib><creatorcontrib>Masoudi, Ali</creatorcontrib><creatorcontrib>Irajizad, Peyman</creatorcontrib><creatorcontrib>Nazari, Masoumeh</creatorcontrib><creatorcontrib>Kashyap, Varun</creatorcontrib><creatorcontrib>Eslami, Bahareh</creatorcontrib><creatorcontrib>Ghasemi, Hadi</creatorcontrib><title>Evaporation Mass Flux: A Predictive Model and Experiments</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Evaporation is a fundamental and core phenomenon in a broad range of disciplines including power generation and refrigeration systems, desalination, electronic/photonic cooling, aviation systems, and even biosciences. Despite its importance, the current theories on evaporation suffer from fitting coefficients with reported values varying in a few orders of magnitude. Lack of a sound model impedes simulation and prediction of characteristics of many systems in these disciplines. Here, we studied evaporation at a planar liquid–vapor interface through a custom-designed, controlled, and automated experimental setup. This experimental setup provides the ability to accurately probe thermodynamic properties in vapor, liquid, and close to the liquid–vapor interface. Through analysis of these thermodynamic properties in a wide range of evaporation mass fluxes, we cast a predictive model of evaporation based on nonequilibrium thermodynamics with no fitting parameters. In this model, only the interfacial temperatures of liquid and vapor phases along with the vapor pressure are needed to predict evaporation mass flux. The model was validated by the reported study of an independent research group. The developed model provides a foundation for all liquid–vapor phase change studies including energy, water, and biological systems.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBwhlySZl_IptdlXVAlIrWMDacmIHpcoLO6navydVW5asZnPunZmD0D2GKQaCn0wWpqWpv6u-8FOZAiFSXaAx5gRiLom4RGMQjMaCJXSEbkLYAICiTF2jEQUspSB4jNRia9rGm65o6mhtQoiWZb97jmbRh3e2yLpi66J1Y10ZmdpGi13rfFG5ugu36Co3ZXB3pzlBX8vF5_w1Xr2_vM1nq9hQybtYpo4Kk4MUGU8cZ2mWYZ5wbDEYyViiTMIcEyS1QAm1JE9UmlPLgKSCcqXoBD0ee1vf_PQudLoqQubK4XfX9EETDJgIoSgeUHZEM9-E4F2u2-FY4_cagz5I04M0fZamT9KG2MNpQ59Wzv6FzpYGAI7AIb5pel8PD__f-QtmAnpn</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Jafari, Parham</creator><creator>Masoudi, Ali</creator><creator>Irajizad, Peyman</creator><creator>Nazari, Masoumeh</creator><creator>Kashyap, Varun</creator><creator>Eslami, Bahareh</creator><creator>Ghasemi, Hadi</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0554-4248</orcidid></search><sort><creationdate>20181002</creationdate><title>Evaporation Mass Flux: A Predictive Model and Experiments</title><author>Jafari, Parham ; Masoudi, Ali ; Irajizad, Peyman ; Nazari, Masoumeh ; Kashyap, Varun ; Eslami, Bahareh ; Ghasemi, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-8be37af087c56e54bcc15651d10a84469a64e472bd0323d2f69bf3d402b735993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jafari, Parham</creatorcontrib><creatorcontrib>Masoudi, Ali</creatorcontrib><creatorcontrib>Irajizad, Peyman</creatorcontrib><creatorcontrib>Nazari, Masoumeh</creatorcontrib><creatorcontrib>Kashyap, Varun</creatorcontrib><creatorcontrib>Eslami, Bahareh</creatorcontrib><creatorcontrib>Ghasemi, Hadi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jafari, Parham</au><au>Masoudi, Ali</au><au>Irajizad, Peyman</au><au>Nazari, Masoumeh</au><au>Kashyap, Varun</au><au>Eslami, Bahareh</au><au>Ghasemi, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation Mass Flux: A Predictive Model and Experiments</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2018-10-02</date><risdate>2018</risdate><volume>34</volume><issue>39</issue><spage>11676</spage><epage>11684</epage><pages>11676-11684</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Evaporation is a fundamental and core phenomenon in a broad range of disciplines including power generation and refrigeration systems, desalination, electronic/photonic cooling, aviation systems, and even biosciences. Despite its importance, the current theories on evaporation suffer from fitting coefficients with reported values varying in a few orders of magnitude. Lack of a sound model impedes simulation and prediction of characteristics of many systems in these disciplines. Here, we studied evaporation at a planar liquid–vapor interface through a custom-designed, controlled, and automated experimental setup. This experimental setup provides the ability to accurately probe thermodynamic properties in vapor, liquid, and close to the liquid–vapor interface. Through analysis of these thermodynamic properties in a wide range of evaporation mass fluxes, we cast a predictive model of evaporation based on nonequilibrium thermodynamics with no fitting parameters. In this model, only the interfacial temperatures of liquid and vapor phases along with the vapor pressure are needed to predict evaporation mass flux. The model was validated by the reported study of an independent research group. The developed model provides a foundation for all liquid–vapor phase change studies including energy, water, and biological systems.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30188721</pmid><doi>10.1021/acs.langmuir.8b02289</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0554-4248</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2018-10, Vol.34 (39), p.11676-11684
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2101277931
source American Chemical Society Journals
title Evaporation Mass Flux: A Predictive Model and Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation%20Mass%20Flux:%20A%20Predictive%20Model%20and%20Experiments&rft.jtitle=Langmuir&rft.au=Jafari,%20Parham&rft.date=2018-10-02&rft.volume=34&rft.issue=39&rft.spage=11676&rft.epage=11684&rft.pages=11676-11684&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.8b02289&rft_dat=%3Cproquest_cross%3E2101277931%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2101277931&rft_id=info:pmid/30188721&rfr_iscdi=true