Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration

Viruses can arise during the manufacture of biopharmaceuticals through contamination or endogenous expression of viral sequences. Regulatory agencies require “viral clearance” validation studies for each biopharmaceutical prior to approval. These studies aim to demonstrate the ability of the manufac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2018-09, Vol.34 (5), p.1213-1220
Hauptverfasser: Cetlin, David, Pallansch, Melanie, Fulton, Coral, Vyas, Esha, Shah, Aesha, Sohka, Taka, Dhar, Arun, Pallansch, Luke, Strauss, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1220
container_issue 5
container_start_page 1213
container_title Biotechnology progress
container_volume 34
creator Cetlin, David
Pallansch, Melanie
Fulton, Coral
Vyas, Esha
Shah, Aesha
Sohka, Taka
Dhar, Arun
Pallansch, Luke
Strauss, Daniel
description Viruses can arise during the manufacture of biopharmaceuticals through contamination or endogenous expression of viral sequences. Regulatory agencies require “viral clearance” validation studies for each biopharmaceutical prior to approval. These studies aim to demonstrate the ability of the manufacturing process at removing or inactivating virus and are conducted by challenging scaled‐down manufacturing steps with a “spike” of live virus. Due to the infectious nature of these live viruses, “spiking studies” are typically conducted in specialized biological safety level‐2 facilities. The costs and logistics associated with these studies limit viral clearance analysis during process development and characterization. In this study, a noninfectious Minute Virus of Mice‐Mock Virus Particle (MVM‐MVP) was generated for use as an economical small virus spiking surrogate. An immunoglobin G containing solution was spiked with live MVM or MVM‐MVP and processed through Planova nanofiltration units. Flux decay data was collected and particle reduction values were calculated from TCID50 and Immuno‐qPCR analysis. The data indicated comparable filtration performance and particle reduction between infectious MVM and noninfectious surrogate, MVM‐MVP. This proof of concept study suggests the feasibility of utilizing MVPs for predictive size‐based viral clearance assessments during process development and characterization as an alternative to homologous infectious virus.
doi_str_mv 10.1002/btpr.2694
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2101276294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101276294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4564-9165350271956a2bb71669b6954f5f01ec3e560a3072efd0855227855de6442c3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUQIMozvhY-AMScKOLOjdpk06WKr5AUGRma0nbW8nQJmPSKv69GWd0IbjJhXByuDmEHDE4ZwB8UvZLf86lyrbImAkOiYQ03SbjaS5kkqt0OiJ7ISwAYAqS75JRCkxliuVj8jIPSF1DNbXOGttg1Rs3BBoG792r7pH2ji491qbqaWfsEG_ejY9EfNSZCqnHzr3rltaDN_aVWm1dY9re6yiyB2Sn0W3Aw83cJ_Ob69nVXfLweHt_dfGQVJmQWaKYFKkAnjMlpOZlmTMpVSmVyBrRAMMqRSFBp5BzbGqYCsF5Hs8aZZbxKt0np2vv0ru3AUNfdCZU2LbaYvxOwRkwnkuusoie_EEXbvA2bhcpDiy2Ax6pszVVeReCx6ZYetNp_1kwKFbRi1X0YhU9sscb41B2WP-SP5UjMFkDH6bFz_9NxeXs6flb-QVnb4rz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120160302</pqid></control><display><type>article</type><title>Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Cetlin, David ; Pallansch, Melanie ; Fulton, Coral ; Vyas, Esha ; Shah, Aesha ; Sohka, Taka ; Dhar, Arun ; Pallansch, Luke ; Strauss, Daniel</creator><creatorcontrib>Cetlin, David ; Pallansch, Melanie ; Fulton, Coral ; Vyas, Esha ; Shah, Aesha ; Sohka, Taka ; Dhar, Arun ; Pallansch, Luke ; Strauss, Daniel</creatorcontrib><description>Viruses can arise during the manufacture of biopharmaceuticals through contamination or endogenous expression of viral sequences. Regulatory agencies require “viral clearance” validation studies for each biopharmaceutical prior to approval. These studies aim to demonstrate the ability of the manufacturing process at removing or inactivating virus and are conducted by challenging scaled‐down manufacturing steps with a “spike” of live virus. Due to the infectious nature of these live viruses, “spiking studies” are typically conducted in specialized biological safety level‐2 facilities. The costs and logistics associated with these studies limit viral clearance analysis during process development and characterization. In this study, a noninfectious Minute Virus of Mice‐Mock Virus Particle (MVM‐MVP) was generated for use as an economical small virus spiking surrogate. An immunoglobin G containing solution was spiked with live MVM or MVM‐MVP and processed through Planova nanofiltration units. Flux decay data was collected and particle reduction values were calculated from TCID50 and Immuno‐qPCR analysis. The data indicated comparable filtration performance and particle reduction between infectious MVM and noninfectious surrogate, MVM‐MVP. This proof of concept study suggests the feasibility of utilizing MVPs for predictive size‐based viral clearance assessments during process development and characterization as an alternative to homologous infectious virus.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2694</identifier><identifier>PMID: 30194917</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Biopharmaceuticals ; Biosafety ; chromotography ; Contamination ; Cost analysis ; Data processing ; Decay ; Feasibility studies ; Filtration ; Filtration - methods ; Homology ; Infectious diseases ; Logistics ; Manufacturing ; Mice ; Minute Virus of Mice ; Nanofiltration ; Nanotechnology ; Particle decay ; process development ; Reduction ; Regulatory agencies ; Spiking ; Ultrafiltration - methods ; viral clearance ; Virion ; Virus Inactivation ; Viruses</subject><ispartof>Biotechnology progress, 2018-09, Vol.34 (5), p.1213-1220</ispartof><rights>2018 American Institute of Chemical Engineers</rights><rights>2018 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4564-9165350271956a2bb71669b6954f5f01ec3e560a3072efd0855227855de6442c3</citedby><cites>FETCH-LOGICAL-c4564-9165350271956a2bb71669b6954f5f01ec3e560a3072efd0855227855de6442c3</cites><orcidid>0000-0002-4907-1403 ; 0000-0001-7803-6917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2694$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2694$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30194917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cetlin, David</creatorcontrib><creatorcontrib>Pallansch, Melanie</creatorcontrib><creatorcontrib>Fulton, Coral</creatorcontrib><creatorcontrib>Vyas, Esha</creatorcontrib><creatorcontrib>Shah, Aesha</creatorcontrib><creatorcontrib>Sohka, Taka</creatorcontrib><creatorcontrib>Dhar, Arun</creatorcontrib><creatorcontrib>Pallansch, Luke</creatorcontrib><creatorcontrib>Strauss, Daniel</creatorcontrib><title>Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Viruses can arise during the manufacture of biopharmaceuticals through contamination or endogenous expression of viral sequences. Regulatory agencies require “viral clearance” validation studies for each biopharmaceutical prior to approval. These studies aim to demonstrate the ability of the manufacturing process at removing or inactivating virus and are conducted by challenging scaled‐down manufacturing steps with a “spike” of live virus. Due to the infectious nature of these live viruses, “spiking studies” are typically conducted in specialized biological safety level‐2 facilities. The costs and logistics associated with these studies limit viral clearance analysis during process development and characterization. In this study, a noninfectious Minute Virus of Mice‐Mock Virus Particle (MVM‐MVP) was generated for use as an economical small virus spiking surrogate. An immunoglobin G containing solution was spiked with live MVM or MVM‐MVP and processed through Planova nanofiltration units. Flux decay data was collected and particle reduction values were calculated from TCID50 and Immuno‐qPCR analysis. The data indicated comparable filtration performance and particle reduction between infectious MVM and noninfectious surrogate, MVM‐MVP. This proof of concept study suggests the feasibility of utilizing MVPs for predictive size‐based viral clearance assessments during process development and characterization as an alternative to homologous infectious virus.</description><subject>Animals</subject><subject>Biopharmaceuticals</subject><subject>Biosafety</subject><subject>chromotography</subject><subject>Contamination</subject><subject>Cost analysis</subject><subject>Data processing</subject><subject>Decay</subject><subject>Feasibility studies</subject><subject>Filtration</subject><subject>Filtration - methods</subject><subject>Homology</subject><subject>Infectious diseases</subject><subject>Logistics</subject><subject>Manufacturing</subject><subject>Mice</subject><subject>Minute Virus of Mice</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Particle decay</subject><subject>process development</subject><subject>Reduction</subject><subject>Regulatory agencies</subject><subject>Spiking</subject><subject>Ultrafiltration - methods</subject><subject>viral clearance</subject><subject>Virion</subject><subject>Virus Inactivation</subject><subject>Viruses</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKxDAUQIMozvhY-AMScKOLOjdpk06WKr5AUGRma0nbW8nQJmPSKv69GWd0IbjJhXByuDmEHDE4ZwB8UvZLf86lyrbImAkOiYQ03SbjaS5kkqt0OiJ7ISwAYAqS75JRCkxliuVj8jIPSF1DNbXOGttg1Rs3BBoG792r7pH2ji491qbqaWfsEG_ejY9EfNSZCqnHzr3rltaDN_aVWm1dY9re6yiyB2Sn0W3Aw83cJ_Ob69nVXfLweHt_dfGQVJmQWaKYFKkAnjMlpOZlmTMpVSmVyBrRAMMqRSFBp5BzbGqYCsF5Hs8aZZbxKt0np2vv0ru3AUNfdCZU2LbaYvxOwRkwnkuusoie_EEXbvA2bhcpDiy2Ax6pszVVeReCx6ZYetNp_1kwKFbRi1X0YhU9sscb41B2WP-SP5UjMFkDH6bFz_9NxeXs6flb-QVnb4rz</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Cetlin, David</creator><creator>Pallansch, Melanie</creator><creator>Fulton, Coral</creator><creator>Vyas, Esha</creator><creator>Shah, Aesha</creator><creator>Sohka, Taka</creator><creator>Dhar, Arun</creator><creator>Pallansch, Luke</creator><creator>Strauss, Daniel</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4907-1403</orcidid><orcidid>https://orcid.org/0000-0001-7803-6917</orcidid></search><sort><creationdate>201809</creationdate><title>Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration</title><author>Cetlin, David ; Pallansch, Melanie ; Fulton, Coral ; Vyas, Esha ; Shah, Aesha ; Sohka, Taka ; Dhar, Arun ; Pallansch, Luke ; Strauss, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4564-9165350271956a2bb71669b6954f5f01ec3e560a3072efd0855227855de6442c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biopharmaceuticals</topic><topic>Biosafety</topic><topic>chromotography</topic><topic>Contamination</topic><topic>Cost analysis</topic><topic>Data processing</topic><topic>Decay</topic><topic>Feasibility studies</topic><topic>Filtration</topic><topic>Filtration - methods</topic><topic>Homology</topic><topic>Infectious diseases</topic><topic>Logistics</topic><topic>Manufacturing</topic><topic>Mice</topic><topic>Minute Virus of Mice</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Particle decay</topic><topic>process development</topic><topic>Reduction</topic><topic>Regulatory agencies</topic><topic>Spiking</topic><topic>Ultrafiltration - methods</topic><topic>viral clearance</topic><topic>Virion</topic><topic>Virus Inactivation</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cetlin, David</creatorcontrib><creatorcontrib>Pallansch, Melanie</creatorcontrib><creatorcontrib>Fulton, Coral</creatorcontrib><creatorcontrib>Vyas, Esha</creatorcontrib><creatorcontrib>Shah, Aesha</creatorcontrib><creatorcontrib>Sohka, Taka</creatorcontrib><creatorcontrib>Dhar, Arun</creatorcontrib><creatorcontrib>Pallansch, Luke</creatorcontrib><creatorcontrib>Strauss, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cetlin, David</au><au>Pallansch, Melanie</au><au>Fulton, Coral</au><au>Vyas, Esha</au><au>Shah, Aesha</au><au>Sohka, Taka</au><au>Dhar, Arun</au><au>Pallansch, Luke</au><au>Strauss, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2018-09</date><risdate>2018</risdate><volume>34</volume><issue>5</issue><spage>1213</spage><epage>1220</epage><pages>1213-1220</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Viruses can arise during the manufacture of biopharmaceuticals through contamination or endogenous expression of viral sequences. Regulatory agencies require “viral clearance” validation studies for each biopharmaceutical prior to approval. These studies aim to demonstrate the ability of the manufacturing process at removing or inactivating virus and are conducted by challenging scaled‐down manufacturing steps with a “spike” of live virus. Due to the infectious nature of these live viruses, “spiking studies” are typically conducted in specialized biological safety level‐2 facilities. The costs and logistics associated with these studies limit viral clearance analysis during process development and characterization. In this study, a noninfectious Minute Virus of Mice‐Mock Virus Particle (MVM‐MVP) was generated for use as an economical small virus spiking surrogate. An immunoglobin G containing solution was spiked with live MVM or MVM‐MVP and processed through Planova nanofiltration units. Flux decay data was collected and particle reduction values were calculated from TCID50 and Immuno‐qPCR analysis. The data indicated comparable filtration performance and particle reduction between infectious MVM and noninfectious surrogate, MVM‐MVP. This proof of concept study suggests the feasibility of utilizing MVPs for predictive size‐based viral clearance assessments during process development and characterization as an alternative to homologous infectious virus.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30194917</pmid><doi>10.1002/btpr.2694</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4907-1403</orcidid><orcidid>https://orcid.org/0000-0001-7803-6917</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2018-09, Vol.34 (5), p.1213-1220
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_2101276294
source MEDLINE; Wiley Online Library All Journals
subjects Animals
Biopharmaceuticals
Biosafety
chromotography
Contamination
Cost analysis
Data processing
Decay
Feasibility studies
Filtration
Filtration - methods
Homology
Infectious diseases
Logistics
Manufacturing
Mice
Minute Virus of Mice
Nanofiltration
Nanotechnology
Particle decay
process development
Reduction
Regulatory agencies
Spiking
Ultrafiltration - methods
viral clearance
Virion
Virus Inactivation
Viruses
title Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20a%20noninfectious%20surrogate%20to%20predict%20minute%20virus%20of%20mice%20removal%20during%20nanofiltration&rft.jtitle=Biotechnology%20progress&rft.au=Cetlin,%20David&rft.date=2018-09&rft.volume=34&rft.issue=5&rft.spage=1213&rft.epage=1220&rft.pages=1213-1220&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2694&rft_dat=%3Cproquest_cross%3E2101276294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120160302&rft_id=info:pmid/30194917&rfr_iscdi=true