Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration
Viruses can arise during the manufacture of biopharmaceuticals through contamination or endogenous expression of viral sequences. Regulatory agencies require “viral clearance” validation studies for each biopharmaceutical prior to approval. These studies aim to demonstrate the ability of the manufac...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2018-09, Vol.34 (5), p.1213-1220 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1220 |
---|---|
container_issue | 5 |
container_start_page | 1213 |
container_title | Biotechnology progress |
container_volume | 34 |
creator | Cetlin, David Pallansch, Melanie Fulton, Coral Vyas, Esha Shah, Aesha Sohka, Taka Dhar, Arun Pallansch, Luke Strauss, Daniel |
description | Viruses can arise during the manufacture of biopharmaceuticals through contamination or endogenous expression of viral sequences. Regulatory agencies require “viral clearance” validation studies for each biopharmaceutical prior to approval. These studies aim to demonstrate the ability of the manufacturing process at removing or inactivating virus and are conducted by challenging scaled‐down manufacturing steps with a “spike” of live virus. Due to the infectious nature of these live viruses, “spiking studies” are typically conducted in specialized biological safety level‐2 facilities. The costs and logistics associated with these studies limit viral clearance analysis during process development and characterization. In this study, a noninfectious Minute Virus of Mice‐Mock Virus Particle (MVM‐MVP) was generated for use as an economical small virus spiking surrogate. An immunoglobin G containing solution was spiked with live MVM or MVM‐MVP and processed through Planova nanofiltration units. Flux decay data was collected and particle reduction values were calculated from TCID50 and Immuno‐qPCR analysis. The data indicated comparable filtration performance and particle reduction between infectious MVM and noninfectious surrogate, MVM‐MVP. This proof of concept study suggests the feasibility of utilizing MVPs for predictive size‐based viral clearance assessments during process development and characterization as an alternative to homologous infectious virus. |
doi_str_mv | 10.1002/btpr.2694 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2101276294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101276294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4564-9165350271956a2bb71669b6954f5f01ec3e560a3072efd0855227855de6442c3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUQIMozvhY-AMScKOLOjdpk06WKr5AUGRma0nbW8nQJmPSKv69GWd0IbjJhXByuDmEHDE4ZwB8UvZLf86lyrbImAkOiYQ03SbjaS5kkqt0OiJ7ISwAYAqS75JRCkxliuVj8jIPSF1DNbXOGttg1Rs3BBoG792r7pH2ji491qbqaWfsEG_ejY9EfNSZCqnHzr3rltaDN_aVWm1dY9re6yiyB2Sn0W3Aw83cJ_Ob69nVXfLweHt_dfGQVJmQWaKYFKkAnjMlpOZlmTMpVSmVyBrRAMMqRSFBp5BzbGqYCsF5Hs8aZZbxKt0np2vv0ru3AUNfdCZU2LbaYvxOwRkwnkuusoie_EEXbvA2bhcpDiy2Ax6pszVVeReCx6ZYetNp_1kwKFbRi1X0YhU9sscb41B2WP-SP5UjMFkDH6bFz_9NxeXs6flb-QVnb4rz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120160302</pqid></control><display><type>article</type><title>Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Cetlin, David ; Pallansch, Melanie ; Fulton, Coral ; Vyas, Esha ; Shah, Aesha ; Sohka, Taka ; Dhar, Arun ; Pallansch, Luke ; Strauss, Daniel</creator><creatorcontrib>Cetlin, David ; Pallansch, Melanie ; Fulton, Coral ; Vyas, Esha ; Shah, Aesha ; Sohka, Taka ; Dhar, Arun ; Pallansch, Luke ; Strauss, Daniel</creatorcontrib><description>Viruses can arise during the manufacture of biopharmaceuticals through contamination or endogenous expression of viral sequences. Regulatory agencies require “viral clearance” validation studies for each biopharmaceutical prior to approval. These studies aim to demonstrate the ability of the manufacturing process at removing or inactivating virus and are conducted by challenging scaled‐down manufacturing steps with a “spike” of live virus. Due to the infectious nature of these live viruses, “spiking studies” are typically conducted in specialized biological safety level‐2 facilities. The costs and logistics associated with these studies limit viral clearance analysis during process development and characterization. In this study, a noninfectious Minute Virus of Mice‐Mock Virus Particle (MVM‐MVP) was generated for use as an economical small virus spiking surrogate. An immunoglobin G containing solution was spiked with live MVM or MVM‐MVP and processed through Planova nanofiltration units. Flux decay data was collected and particle reduction values were calculated from TCID50 and Immuno‐qPCR analysis. The data indicated comparable filtration performance and particle reduction between infectious MVM and noninfectious surrogate, MVM‐MVP. This proof of concept study suggests the feasibility of utilizing MVPs for predictive size‐based viral clearance assessments during process development and characterization as an alternative to homologous infectious virus.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2694</identifier><identifier>PMID: 30194917</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Biopharmaceuticals ; Biosafety ; chromotography ; Contamination ; Cost analysis ; Data processing ; Decay ; Feasibility studies ; Filtration ; Filtration - methods ; Homology ; Infectious diseases ; Logistics ; Manufacturing ; Mice ; Minute Virus of Mice ; Nanofiltration ; Nanotechnology ; Particle decay ; process development ; Reduction ; Regulatory agencies ; Spiking ; Ultrafiltration - methods ; viral clearance ; Virion ; Virus Inactivation ; Viruses</subject><ispartof>Biotechnology progress, 2018-09, Vol.34 (5), p.1213-1220</ispartof><rights>2018 American Institute of Chemical Engineers</rights><rights>2018 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4564-9165350271956a2bb71669b6954f5f01ec3e560a3072efd0855227855de6442c3</citedby><cites>FETCH-LOGICAL-c4564-9165350271956a2bb71669b6954f5f01ec3e560a3072efd0855227855de6442c3</cites><orcidid>0000-0002-4907-1403 ; 0000-0001-7803-6917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2694$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2694$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30194917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cetlin, David</creatorcontrib><creatorcontrib>Pallansch, Melanie</creatorcontrib><creatorcontrib>Fulton, Coral</creatorcontrib><creatorcontrib>Vyas, Esha</creatorcontrib><creatorcontrib>Shah, Aesha</creatorcontrib><creatorcontrib>Sohka, Taka</creatorcontrib><creatorcontrib>Dhar, Arun</creatorcontrib><creatorcontrib>Pallansch, Luke</creatorcontrib><creatorcontrib>Strauss, Daniel</creatorcontrib><title>Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Viruses can arise during the manufacture of biopharmaceuticals through contamination or endogenous expression of viral sequences. Regulatory agencies require “viral clearance” validation studies for each biopharmaceutical prior to approval. These studies aim to demonstrate the ability of the manufacturing process at removing or inactivating virus and are conducted by challenging scaled‐down manufacturing steps with a “spike” of live virus. Due to the infectious nature of these live viruses, “spiking studies” are typically conducted in specialized biological safety level‐2 facilities. The costs and logistics associated with these studies limit viral clearance analysis during process development and characterization. In this study, a noninfectious Minute Virus of Mice‐Mock Virus Particle (MVM‐MVP) was generated for use as an economical small virus spiking surrogate. An immunoglobin G containing solution was spiked with live MVM or MVM‐MVP and processed through Planova nanofiltration units. Flux decay data was collected and particle reduction values were calculated from TCID50 and Immuno‐qPCR analysis. The data indicated comparable filtration performance and particle reduction between infectious MVM and noninfectious surrogate, MVM‐MVP. This proof of concept study suggests the feasibility of utilizing MVPs for predictive size‐based viral clearance assessments during process development and characterization as an alternative to homologous infectious virus.</description><subject>Animals</subject><subject>Biopharmaceuticals</subject><subject>Biosafety</subject><subject>chromotography</subject><subject>Contamination</subject><subject>Cost analysis</subject><subject>Data processing</subject><subject>Decay</subject><subject>Feasibility studies</subject><subject>Filtration</subject><subject>Filtration - methods</subject><subject>Homology</subject><subject>Infectious diseases</subject><subject>Logistics</subject><subject>Manufacturing</subject><subject>Mice</subject><subject>Minute Virus of Mice</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Particle decay</subject><subject>process development</subject><subject>Reduction</subject><subject>Regulatory agencies</subject><subject>Spiking</subject><subject>Ultrafiltration - methods</subject><subject>viral clearance</subject><subject>Virion</subject><subject>Virus Inactivation</subject><subject>Viruses</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kMtKxDAUQIMozvhY-AMScKOLOjdpk06WKr5AUGRma0nbW8nQJmPSKv69GWd0IbjJhXByuDmEHDE4ZwB8UvZLf86lyrbImAkOiYQ03SbjaS5kkqt0OiJ7ISwAYAqS75JRCkxliuVj8jIPSF1DNbXOGttg1Rs3BBoG792r7pH2ji491qbqaWfsEG_ejY9EfNSZCqnHzr3rltaDN_aVWm1dY9re6yiyB2Sn0W3Aw83cJ_Ob69nVXfLweHt_dfGQVJmQWaKYFKkAnjMlpOZlmTMpVSmVyBrRAMMqRSFBp5BzbGqYCsF5Hs8aZZbxKt0np2vv0ru3AUNfdCZU2LbaYvxOwRkwnkuusoie_EEXbvA2bhcpDiy2Ax6pszVVeReCx6ZYetNp_1kwKFbRi1X0YhU9sscb41B2WP-SP5UjMFkDH6bFz_9NxeXs6flb-QVnb4rz</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Cetlin, David</creator><creator>Pallansch, Melanie</creator><creator>Fulton, Coral</creator><creator>Vyas, Esha</creator><creator>Shah, Aesha</creator><creator>Sohka, Taka</creator><creator>Dhar, Arun</creator><creator>Pallansch, Luke</creator><creator>Strauss, Daniel</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4907-1403</orcidid><orcidid>https://orcid.org/0000-0001-7803-6917</orcidid></search><sort><creationdate>201809</creationdate><title>Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration</title><author>Cetlin, David ; Pallansch, Melanie ; Fulton, Coral ; Vyas, Esha ; Shah, Aesha ; Sohka, Taka ; Dhar, Arun ; Pallansch, Luke ; Strauss, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4564-9165350271956a2bb71669b6954f5f01ec3e560a3072efd0855227855de6442c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biopharmaceuticals</topic><topic>Biosafety</topic><topic>chromotography</topic><topic>Contamination</topic><topic>Cost analysis</topic><topic>Data processing</topic><topic>Decay</topic><topic>Feasibility studies</topic><topic>Filtration</topic><topic>Filtration - methods</topic><topic>Homology</topic><topic>Infectious diseases</topic><topic>Logistics</topic><topic>Manufacturing</topic><topic>Mice</topic><topic>Minute Virus of Mice</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Particle decay</topic><topic>process development</topic><topic>Reduction</topic><topic>Regulatory agencies</topic><topic>Spiking</topic><topic>Ultrafiltration - methods</topic><topic>viral clearance</topic><topic>Virion</topic><topic>Virus Inactivation</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cetlin, David</creatorcontrib><creatorcontrib>Pallansch, Melanie</creatorcontrib><creatorcontrib>Fulton, Coral</creatorcontrib><creatorcontrib>Vyas, Esha</creatorcontrib><creatorcontrib>Shah, Aesha</creatorcontrib><creatorcontrib>Sohka, Taka</creatorcontrib><creatorcontrib>Dhar, Arun</creatorcontrib><creatorcontrib>Pallansch, Luke</creatorcontrib><creatorcontrib>Strauss, Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cetlin, David</au><au>Pallansch, Melanie</au><au>Fulton, Coral</au><au>Vyas, Esha</au><au>Shah, Aesha</au><au>Sohka, Taka</au><au>Dhar, Arun</au><au>Pallansch, Luke</au><au>Strauss, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2018-09</date><risdate>2018</risdate><volume>34</volume><issue>5</issue><spage>1213</spage><epage>1220</epage><pages>1213-1220</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Viruses can arise during the manufacture of biopharmaceuticals through contamination or endogenous expression of viral sequences. Regulatory agencies require “viral clearance” validation studies for each biopharmaceutical prior to approval. These studies aim to demonstrate the ability of the manufacturing process at removing or inactivating virus and are conducted by challenging scaled‐down manufacturing steps with a “spike” of live virus. Due to the infectious nature of these live viruses, “spiking studies” are typically conducted in specialized biological safety level‐2 facilities. The costs and logistics associated with these studies limit viral clearance analysis during process development and characterization. In this study, a noninfectious Minute Virus of Mice‐Mock Virus Particle (MVM‐MVP) was generated for use as an economical small virus spiking surrogate. An immunoglobin G containing solution was spiked with live MVM or MVM‐MVP and processed through Planova nanofiltration units. Flux decay data was collected and particle reduction values were calculated from TCID50 and Immuno‐qPCR analysis. The data indicated comparable filtration performance and particle reduction between infectious MVM and noninfectious surrogate, MVM‐MVP. This proof of concept study suggests the feasibility of utilizing MVPs for predictive size‐based viral clearance assessments during process development and characterization as an alternative to homologous infectious virus.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>30194917</pmid><doi>10.1002/btpr.2694</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4907-1403</orcidid><orcidid>https://orcid.org/0000-0001-7803-6917</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2018-09, Vol.34 (5), p.1213-1220 |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_2101276294 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Animals Biopharmaceuticals Biosafety chromotography Contamination Cost analysis Data processing Decay Feasibility studies Filtration Filtration - methods Homology Infectious diseases Logistics Manufacturing Mice Minute Virus of Mice Nanofiltration Nanotechnology Particle decay process development Reduction Regulatory agencies Spiking Ultrafiltration - methods viral clearance Virion Virus Inactivation Viruses |
title | Use of a noninfectious surrogate to predict minute virus of mice removal during nanofiltration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20a%20noninfectious%20surrogate%20to%20predict%20minute%20virus%20of%20mice%20removal%20during%20nanofiltration&rft.jtitle=Biotechnology%20progress&rft.au=Cetlin,%20David&rft.date=2018-09&rft.volume=34&rft.issue=5&rft.spage=1213&rft.epage=1220&rft.pages=1213-1220&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2694&rft_dat=%3Cproquest_cross%3E2101276294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120160302&rft_id=info:pmid/30194917&rfr_iscdi=true |