FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images

Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2018-11, Vol.13 (11), p.1707-1716
Hauptverfasser: Villa, M., Dardenne, G., Nasan, M., Letissier, H., Hamitouche, C., Stindel, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1716
container_issue 11
container_start_page 1707
container_title International journal for computer assisted radiology and surgery
container_volume 13
creator Villa, M.
Dardenne, G.
Nasan, M.
Letissier, H.
Hamitouche, C.
Stindel, E.
description Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS). Methods The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE). Results The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70  mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm. Conclusion The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.
doi_str_mv 10.1007/s11548-018-1856-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2101269011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101269011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk5_gDcS8Mabak6btsmlDKfC0BvFy5Amp_tgbWbSwvz3ZmxOELzKgTznzZuHkEtgt8BYeRcAci4SBiIBkRfJ5ogMQRSQFDyVx4cZ2ICchbBkjOdllp-SQcZA8rzIh-RjMn5JKh3QUr1ee6fNnNbO026OVPeda3S3MDTgrMG2i7Nrqatp5Vqkofe1NhjooqX9qvM6uL61dNHoGYZzclLrVcCL_Tki75OHt_FTMn19fB7fTxOTlWmXcKtLtq0iZWG0lRa5BVELyzKohUxtarmojIG0YlbIDHkpUUBel5gB4zYbkZtdbuz-2WPoVLMIBlcr3aLrg0qBQVpIBhDR6z_o0vW-je0iBSWUecFEpGBHGe9C8FirtY9f8l8KmNpaVzvrKlpXW-tqE3eu9sl91aA9bPxojkC6A0K8amfof5_-P_UbeLuM3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117175608</pqid></control><display><type>article</type><title>FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Villa, M. ; Dardenne, G. ; Nasan, M. ; Letissier, H. ; Hamitouche, C. ; Stindel, E.</creator><creatorcontrib>Villa, M. ; Dardenne, G. ; Nasan, M. ; Letissier, H. ; Hamitouche, C. ; Stindel, E.</creatorcontrib><description>Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS). Methods The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE). Results The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70  mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm. Conclusion The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-018-1856-x</identifier><identifier>PMID: 30194565</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Annotations ; Artificial neural networks ; Bone and Bones - diagnostic imaging ; Computer Imaging ; Computer Science ; Health Informatics ; Humans ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Imaging ; Medicine ; Medicine &amp; Public Health ; Observer Variation ; Original Article ; Pattern Recognition and Graphics ; Radiology ; Recall ; Reproducibility of Results ; Root-mean-square errors ; Sensitivity and Specificity ; Surgery ; Ultrasonic imaging ; Ultrasonography - methods ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2018-11, Vol.13 (11), p.1707-1716</ispartof><rights>CARS 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3</citedby><cites>FETCH-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3</cites><orcidid>0000-0001-5636-9542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-018-1856-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-018-1856-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30194565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villa, M.</creatorcontrib><creatorcontrib>Dardenne, G.</creatorcontrib><creatorcontrib>Nasan, M.</creatorcontrib><creatorcontrib>Letissier, H.</creatorcontrib><creatorcontrib>Hamitouche, C.</creatorcontrib><creatorcontrib>Stindel, E.</creatorcontrib><title>FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS). Methods The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE). Results The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70  mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm. Conclusion The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Bone and Bones - diagnostic imaging</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Observer Variation</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Radiology</subject><subject>Recall</subject><subject>Reproducibility of Results</subject><subject>Root-mean-square errors</subject><subject>Sensitivity and Specificity</subject><subject>Surgery</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Vision</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUhoMobk5_gDcS8Mabak6btsmlDKfC0BvFy5Amp_tgbWbSwvz3ZmxOELzKgTznzZuHkEtgt8BYeRcAci4SBiIBkRfJ5ogMQRSQFDyVx4cZ2ICchbBkjOdllp-SQcZA8rzIh-RjMn5JKh3QUr1ee6fNnNbO026OVPeda3S3MDTgrMG2i7Nrqatp5Vqkofe1NhjooqX9qvM6uL61dNHoGYZzclLrVcCL_Tki75OHt_FTMn19fB7fTxOTlWmXcKtLtq0iZWG0lRa5BVELyzKohUxtarmojIG0YlbIDHkpUUBel5gB4zYbkZtdbuz-2WPoVLMIBlcr3aLrg0qBQVpIBhDR6z_o0vW-je0iBSWUecFEpGBHGe9C8FirtY9f8l8KmNpaVzvrKlpXW-tqE3eu9sl91aA9bPxojkC6A0K8amfof5_-P_UbeLuM3A</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Villa, M.</creator><creator>Dardenne, G.</creator><creator>Nasan, M.</creator><creator>Letissier, H.</creator><creator>Hamitouche, C.</creator><creator>Stindel, E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5636-9542</orcidid></search><sort><creationdate>20181101</creationdate><title>FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images</title><author>Villa, M. ; Dardenne, G. ; Nasan, M. ; Letissier, H. ; Hamitouche, C. ; Stindel, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Bone and Bones - diagnostic imaging</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Observer Variation</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Radiology</topic><topic>Recall</topic><topic>Reproducibility of Results</topic><topic>Root-mean-square errors</topic><topic>Sensitivity and Specificity</topic><topic>Surgery</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villa, M.</creatorcontrib><creatorcontrib>Dardenne, G.</creatorcontrib><creatorcontrib>Nasan, M.</creatorcontrib><creatorcontrib>Letissier, H.</creatorcontrib><creatorcontrib>Hamitouche, C.</creatorcontrib><creatorcontrib>Stindel, E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villa, M.</au><au>Dardenne, G.</au><au>Nasan, M.</au><au>Letissier, H.</au><au>Hamitouche, C.</au><au>Stindel, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>13</volume><issue>11</issue><spage>1707</spage><epage>1716</epage><pages>1707-1716</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS). Methods The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE). Results The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70  mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm. Conclusion The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>30194565</pmid><doi>10.1007/s11548-018-1856-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5636-9542</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-6410
ispartof International journal for computer assisted radiology and surgery, 2018-11, Vol.13 (11), p.1707-1716
issn 1861-6410
1861-6429
language eng
recordid cdi_proquest_miscellaneous_2101269011
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Algorithms
Annotations
Artificial neural networks
Bone and Bones - diagnostic imaging
Computer Imaging
Computer Science
Health Informatics
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Imaging
Medicine
Medicine & Public Health
Observer Variation
Original Article
Pattern Recognition and Graphics
Radiology
Recall
Reproducibility of Results
Root-mean-square errors
Sensitivity and Specificity
Surgery
Ultrasonic imaging
Ultrasonography - methods
Vision
title FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FCN-based%20approach%20for%20the%20automatic%20segmentation%20of%20bone%20surfaces%20in%20ultrasound%20images&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Villa,%20M.&rft.date=2018-11-01&rft.volume=13&rft.issue=11&rft.spage=1707&rft.epage=1716&rft.pages=1707-1716&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-018-1856-x&rft_dat=%3Cproquest_cross%3E2101269011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117175608&rft_id=info:pmid/30194565&rfr_iscdi=true