FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images
Purpose A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confi...
Gespeichert in:
Veröffentlicht in: | International journal for computer assisted radiology and surgery 2018-11, Vol.13 (11), p.1707-1716 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1716 |
---|---|
container_issue | 11 |
container_start_page | 1707 |
container_title | International journal for computer assisted radiology and surgery |
container_volume | 13 |
creator | Villa, M. Dardenne, G. Nasan, M. Letissier, H. Hamitouche, C. Stindel, E. |
description | Purpose
A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).
Methods
The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).
Results
The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.
Conclusion
The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty. |
doi_str_mv | 10.1007/s11548-018-1856-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2101269011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2101269011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk5_gDcS8Mabak6btsmlDKfC0BvFy5Amp_tgbWbSwvz3ZmxOELzKgTznzZuHkEtgt8BYeRcAci4SBiIBkRfJ5ogMQRSQFDyVx4cZ2ICchbBkjOdllp-SQcZA8rzIh-RjMn5JKh3QUr1ee6fNnNbO026OVPeda3S3MDTgrMG2i7Nrqatp5Vqkofe1NhjooqX9qvM6uL61dNHoGYZzclLrVcCL_Tki75OHt_FTMn19fB7fTxOTlWmXcKtLtq0iZWG0lRa5BVELyzKohUxtarmojIG0YlbIDHkpUUBel5gB4zYbkZtdbuz-2WPoVLMIBlcr3aLrg0qBQVpIBhDR6z_o0vW-je0iBSWUecFEpGBHGe9C8FirtY9f8l8KmNpaVzvrKlpXW-tqE3eu9sl91aA9bPxojkC6A0K8amfof5_-P_UbeLuM3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117175608</pqid></control><display><type>article</type><title>FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Villa, M. ; Dardenne, G. ; Nasan, M. ; Letissier, H. ; Hamitouche, C. ; Stindel, E.</creator><creatorcontrib>Villa, M. ; Dardenne, G. ; Nasan, M. ; Letissier, H. ; Hamitouche, C. ; Stindel, E.</creatorcontrib><description>Purpose
A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).
Methods
The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).
Results
The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.
Conclusion
The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.</description><identifier>ISSN: 1861-6410</identifier><identifier>EISSN: 1861-6429</identifier><identifier>DOI: 10.1007/s11548-018-1856-x</identifier><identifier>PMID: 30194565</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Annotations ; Artificial neural networks ; Bone and Bones - diagnostic imaging ; Computer Imaging ; Computer Science ; Health Informatics ; Humans ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Imaging ; Medicine ; Medicine & Public Health ; Observer Variation ; Original Article ; Pattern Recognition and Graphics ; Radiology ; Recall ; Reproducibility of Results ; Root-mean-square errors ; Sensitivity and Specificity ; Surgery ; Ultrasonic imaging ; Ultrasonography - methods ; Vision</subject><ispartof>International journal for computer assisted radiology and surgery, 2018-11, Vol.13 (11), p.1707-1716</ispartof><rights>CARS 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3</citedby><cites>FETCH-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3</cites><orcidid>0000-0001-5636-9542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11548-018-1856-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11548-018-1856-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30194565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Villa, M.</creatorcontrib><creatorcontrib>Dardenne, G.</creatorcontrib><creatorcontrib>Nasan, M.</creatorcontrib><creatorcontrib>Letissier, H.</creatorcontrib><creatorcontrib>Hamitouche, C.</creatorcontrib><creatorcontrib>Stindel, E.</creatorcontrib><title>FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images</title><title>International journal for computer assisted radiology and surgery</title><addtitle>Int J CARS</addtitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><description>Purpose
A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).
Methods
The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).
Results
The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.
Conclusion
The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.</description><subject>Algorithms</subject><subject>Annotations</subject><subject>Artificial neural networks</subject><subject>Bone and Bones - diagnostic imaging</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Health Informatics</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Observer Variation</subject><subject>Original Article</subject><subject>Pattern Recognition and Graphics</subject><subject>Radiology</subject><subject>Recall</subject><subject>Reproducibility of Results</subject><subject>Root-mean-square errors</subject><subject>Sensitivity and Specificity</subject><subject>Surgery</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography - methods</subject><subject>Vision</subject><issn>1861-6410</issn><issn>1861-6429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUhoMobk5_gDcS8Mabak6btsmlDKfC0BvFy5Amp_tgbWbSwvz3ZmxOELzKgTznzZuHkEtgt8BYeRcAci4SBiIBkRfJ5ogMQRSQFDyVx4cZ2ICchbBkjOdllp-SQcZA8rzIh-RjMn5JKh3QUr1ee6fNnNbO026OVPeda3S3MDTgrMG2i7Nrqatp5Vqkofe1NhjooqX9qvM6uL61dNHoGYZzclLrVcCL_Tki75OHt_FTMn19fB7fTxOTlWmXcKtLtq0iZWG0lRa5BVELyzKohUxtarmojIG0YlbIDHkpUUBel5gB4zYbkZtdbuz-2WPoVLMIBlcr3aLrg0qBQVpIBhDR6z_o0vW-je0iBSWUecFEpGBHGe9C8FirtY9f8l8KmNpaVzvrKlpXW-tqE3eu9sl91aA9bPxojkC6A0K8amfof5_-P_UbeLuM3A</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Villa, M.</creator><creator>Dardenne, G.</creator><creator>Nasan, M.</creator><creator>Letissier, H.</creator><creator>Hamitouche, C.</creator><creator>Stindel, E.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5636-9542</orcidid></search><sort><creationdate>20181101</creationdate><title>FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images</title><author>Villa, M. ; Dardenne, G. ; Nasan, M. ; Letissier, H. ; Hamitouche, C. ; Stindel, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4da709456996cad9de4d18f8d031f892d2d48bcc12b0d893e479e815f7e3104d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Annotations</topic><topic>Artificial neural networks</topic><topic>Bone and Bones - diagnostic imaging</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Health Informatics</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Observer Variation</topic><topic>Original Article</topic><topic>Pattern Recognition and Graphics</topic><topic>Radiology</topic><topic>Recall</topic><topic>Reproducibility of Results</topic><topic>Root-mean-square errors</topic><topic>Sensitivity and Specificity</topic><topic>Surgery</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography - methods</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villa, M.</creatorcontrib><creatorcontrib>Dardenne, G.</creatorcontrib><creatorcontrib>Nasan, M.</creatorcontrib><creatorcontrib>Letissier, H.</creatorcontrib><creatorcontrib>Hamitouche, C.</creatorcontrib><creatorcontrib>Stindel, E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for computer assisted radiology and surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villa, M.</au><au>Dardenne, G.</au><au>Nasan, M.</au><au>Letissier, H.</au><au>Hamitouche, C.</au><au>Stindel, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images</atitle><jtitle>International journal for computer assisted radiology and surgery</jtitle><stitle>Int J CARS</stitle><addtitle>Int J Comput Assist Radiol Surg</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>13</volume><issue>11</issue><spage>1707</spage><epage>1716</epage><pages>1707-1716</pages><issn>1861-6410</issn><eissn>1861-6429</eissn><abstract>Purpose
A new algorithm, based on fully convolutional networks (FCN), is proposed for the automatic localization of the bone interface in ultrasound (US) images. The aim of this paper is to compare and validate this method with (1) a manual segmentation and (2) a state-of-the-art method called confidence in phase symmetry (CPS).
Methods
The dataset used for this study was composed of 1738 US images collected from three volunteers and manually delineated by three experts. The inter- and intra-observer variabilities of this manual delineation were assessed. Images having annotations with an inter-observer variability higher than a confidence threshold were rejected, resulting in 1287 images. Both FCN-based and CPS approaches were studied and compared to the average inter-observer segmentation according to six criteria: recall, precision, F1 score, accuracy, specificity and root-mean-square error (RMSE).
Results
The intra- and inter-observer variabilities were inferior to 1 mm for 90% of manual annotations. The RMSE was 1.32 ± 3.70 mm and 5.00 ± 7.70 mm for, respectively, the FCN-based approach and the CPS algorithm. The mean recall, precision, F1 score, accuracy and specificity were, respectively, 62%, 64%, 57%, 80% and 83% for the FCN-based approach and 66%, 34%, 41%, 52% and 43% for the CPS algorithm.
Conclusion
The FCN-based approach outperforms the CPS algorithm, and the obtained RMSE is similar to the manual segmentation uncertainty.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>30194565</pmid><doi>10.1007/s11548-018-1856-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5636-9542</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-6410 |
ispartof | International journal for computer assisted radiology and surgery, 2018-11, Vol.13 (11), p.1707-1716 |
issn | 1861-6410 1861-6429 |
language | eng |
recordid | cdi_proquest_miscellaneous_2101269011 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Algorithms Annotations Artificial neural networks Bone and Bones - diagnostic imaging Computer Imaging Computer Science Health Informatics Humans Image Processing, Computer-Assisted - methods Image segmentation Imaging Medicine Medicine & Public Health Observer Variation Original Article Pattern Recognition and Graphics Radiology Recall Reproducibility of Results Root-mean-square errors Sensitivity and Specificity Surgery Ultrasonic imaging Ultrasonography - methods Vision |
title | FCN-based approach for the automatic segmentation of bone surfaces in ultrasound images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A58%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FCN-based%20approach%20for%20the%20automatic%20segmentation%20of%20bone%20surfaces%20in%20ultrasound%20images&rft.jtitle=International%20journal%20for%20computer%20assisted%20radiology%20and%20surgery&rft.au=Villa,%20M.&rft.date=2018-11-01&rft.volume=13&rft.issue=11&rft.spage=1707&rft.epage=1716&rft.pages=1707-1716&rft.issn=1861-6410&rft.eissn=1861-6429&rft_id=info:doi/10.1007/s11548-018-1856-x&rft_dat=%3Cproquest_cross%3E2101269011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117175608&rft_id=info:pmid/30194565&rfr_iscdi=true |