Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment

This paper investigates the removal of a broad range of pharmaceuticals during nanofiltration (NF) and reverse osmosis (RO) applied in a full-scale drinking water treatment plant (DWTP) using groundwater. Pharmaceutical residues detected in groundwater used as feed water in all five sampling campaig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2008-08, Vol.42 (14), p.3601-3610
Hauptverfasser: Radjenović, J., Petrović, M., Ventura, F., Barceló, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3610
container_issue 14
container_start_page 3601
container_title Water research (Oxford)
container_volume 42
creator Radjenović, J.
Petrović, M.
Ventura, F.
Barceló, D.
description This paper investigates the removal of a broad range of pharmaceuticals during nanofiltration (NF) and reverse osmosis (RO) applied in a full-scale drinking water treatment plant (DWTP) using groundwater. Pharmaceutical residues detected in groundwater used as feed water in all five sampling campaigns were analgesics and anti-inflammatory drugs such as ketoprofen, diclofenac, acetaminophen and propyphenazone, β-blockers sotalol and metoprolol, an antiepileptic drug carbamazepine, the antibiotic sulfamethoxazole, a lipid regulator gemfibrozil and a diuretic hydrochlorothiazide. The highest concentrations in groundwater were recorded for hydrochlorothiazide (58.6–2548 ng L −1), ketoprofen (85%). Deteriorations in retentions on NF and RO membranes were observed for acetaminophen (44.8–73 %), gemfibrozil (50–70 %) and mefenamic acid (30–50%). Furthermore, since several pharmaceutical residues were detected in the brine stream of NF and RO processes at concentrations of several hundreds nanogram per litre, its disposal to a near-by river can represent a possible risk implication of this type of treatment.
doi_str_mv 10.1016/j.watres.2008.05.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21009624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135408002248</els_id><sourcerecordid>14862106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-5f777d9c9c2d3c7bf136a4b4c0d3aba6546550b0447e940a773850dad833a0963</originalsourceid><addsrcrecordid>eNqFkU1v1DAURS0EotPCP0DgDewSnj-TbJCqCgpSJSSga8uxX4qHiT3YmSL-PR4ygh2svDnv-uoeQp4xaBkw_Xrb_rBLxtJygL4F1QKHB2TD-m5ouJT9Q7IBkKJhQskzcl7KFgA4F8NjcsZ6rTTnakP8J9yiW0KKNE10_9Xm2To8LMHZXaEh0mhjmsJuyfY3ZKOnGe8xF6SpzKmEQmecx2wjUp9D_BbiHa3NMNPazi4zxuUJeTTVOHx6ei_I7bu3X67eNzcfrz9cXd40Tkm-NGrqus4PbnDcC9eNExPaylE68MKOViuplYIRpOxwkGC7TvQKvPW9EBYGLS7IqzV3n9P3A5bFzKE43O1quXQohjOoGJf_BZnsdYWPiXIFXU6lZJzMPofZ5p-GgTlqMFuzajBHDQaUqRrq2fNT_mGc0f89Ou1egZcnwJa69FTnc6H84ThoxXp5_P_Fyk02GXuXK3P7mQMTwJSUHPpKvFkJrMPeB8ymuIDRoQ-5ijU-hX93_QWaj7JU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14862106</pqid></control><display><type>article</type><title>Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Radjenović, J. ; Petrović, M. ; Ventura, F. ; Barceló, D.</creator><creatorcontrib>Radjenović, J. ; Petrović, M. ; Ventura, F. ; Barceló, D.</creatorcontrib><description>This paper investigates the removal of a broad range of pharmaceuticals during nanofiltration (NF) and reverse osmosis (RO) applied in a full-scale drinking water treatment plant (DWTP) using groundwater. Pharmaceutical residues detected in groundwater used as feed water in all five sampling campaigns were analgesics and anti-inflammatory drugs such as ketoprofen, diclofenac, acetaminophen and propyphenazone, β-blockers sotalol and metoprolol, an antiepileptic drug carbamazepine, the antibiotic sulfamethoxazole, a lipid regulator gemfibrozil and a diuretic hydrochlorothiazide. The highest concentrations in groundwater were recorded for hydrochlorothiazide (58.6–2548 ng L −1), ketoprofen (&lt;MQL–314 ng L −1), diclofenac (60.2–219.4 ng L −1), propyphenazone (51.5–295.8 ng L −1) and carbamazepine (8.7–166.5 ng L −1). Excellent overall performance of both NF and RO was noted, with high rejection percentages for almost all of the pharmaceuticals investigated (&gt;85%). Deteriorations in retentions on NF and RO membranes were observed for acetaminophen (44.8–73 %), gemfibrozil (50–70 %) and mefenamic acid (30–50%). Furthermore, since several pharmaceutical residues were detected in the brine stream of NF and RO processes at concentrations of several hundreds nanogram per litre, its disposal to a near-by river can represent a possible risk implication of this type of treatment.</description><identifier>ISSN: 0043-1354</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2008.05.020</identifier><identifier>PMID: 18656225</identifier><identifier>CODEN: WATRAG</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; brine stream ; chemical concentration ; Drinking water treatment ; drug residues ; Drug Residues - chemistry ; drugs ; effluents ; Exact sciences and technology ; filtration ; Filtration - instrumentation ; Filtration - methods ; groundwater ; groundwater contamination ; Molecular Structure ; Nanofiltration ; Nanostructures ; Osmosis ; Other industrial wastes. Sewage sludge ; Pharmaceutical Preparations - chemistry ; Pharmaceuticals ; Pollution ; Rejection efficiency ; Reverse osmosis ; rivers ; surface water ; Wastes ; wastewater ; Water - chemistry ; Water Pollutants, Chemical - chemistry ; Water Purification - instrumentation ; Water Purification - methods ; water treatment ; Water treatment and pollution</subject><ispartof>Water research (Oxford), 2008-08, Vol.42 (14), p.3601-3610</ispartof><rights>2008 Elsevier Ltd</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-5f777d9c9c2d3c7bf136a4b4c0d3aba6546550b0447e940a773850dad833a0963</citedby><cites>FETCH-LOGICAL-c542t-5f777d9c9c2d3c7bf136a4b4c0d3aba6546550b0447e940a773850dad833a0963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135408002248$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20651846$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18656225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radjenović, J.</creatorcontrib><creatorcontrib>Petrović, M.</creatorcontrib><creatorcontrib>Ventura, F.</creatorcontrib><creatorcontrib>Barceló, D.</creatorcontrib><title>Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>This paper investigates the removal of a broad range of pharmaceuticals during nanofiltration (NF) and reverse osmosis (RO) applied in a full-scale drinking water treatment plant (DWTP) using groundwater. Pharmaceutical residues detected in groundwater used as feed water in all five sampling campaigns were analgesics and anti-inflammatory drugs such as ketoprofen, diclofenac, acetaminophen and propyphenazone, β-blockers sotalol and metoprolol, an antiepileptic drug carbamazepine, the antibiotic sulfamethoxazole, a lipid regulator gemfibrozil and a diuretic hydrochlorothiazide. The highest concentrations in groundwater were recorded for hydrochlorothiazide (58.6–2548 ng L −1), ketoprofen (&lt;MQL–314 ng L −1), diclofenac (60.2–219.4 ng L −1), propyphenazone (51.5–295.8 ng L −1) and carbamazepine (8.7–166.5 ng L −1). Excellent overall performance of both NF and RO was noted, with high rejection percentages for almost all of the pharmaceuticals investigated (&gt;85%). Deteriorations in retentions on NF and RO membranes were observed for acetaminophen (44.8–73 %), gemfibrozil (50–70 %) and mefenamic acid (30–50%). Furthermore, since several pharmaceutical residues were detected in the brine stream of NF and RO processes at concentrations of several hundreds nanogram per litre, its disposal to a near-by river can represent a possible risk implication of this type of treatment.</description><subject>Applied sciences</subject><subject>brine stream</subject><subject>chemical concentration</subject><subject>Drinking water treatment</subject><subject>drug residues</subject><subject>Drug Residues - chemistry</subject><subject>drugs</subject><subject>effluents</subject><subject>Exact sciences and technology</subject><subject>filtration</subject><subject>Filtration - instrumentation</subject><subject>Filtration - methods</subject><subject>groundwater</subject><subject>groundwater contamination</subject><subject>Molecular Structure</subject><subject>Nanofiltration</subject><subject>Nanostructures</subject><subject>Osmosis</subject><subject>Other industrial wastes. Sewage sludge</subject><subject>Pharmaceutical Preparations - chemistry</subject><subject>Pharmaceuticals</subject><subject>Pollution</subject><subject>Rejection efficiency</subject><subject>Reverse osmosis</subject><subject>rivers</subject><subject>surface water</subject><subject>Wastes</subject><subject>wastewater</subject><subject>Water - chemistry</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Water Purification - instrumentation</subject><subject>Water Purification - methods</subject><subject>water treatment</subject><subject>Water treatment and pollution</subject><issn>0043-1354</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAURS0EotPCP0DgDewSnj-TbJCqCgpSJSSga8uxX4qHiT3YmSL-PR4ygh2svDnv-uoeQp4xaBkw_Xrb_rBLxtJygL4F1QKHB2TD-m5ouJT9Q7IBkKJhQskzcl7KFgA4F8NjcsZ6rTTnakP8J9yiW0KKNE10_9Xm2To8LMHZXaEh0mhjmsJuyfY3ZKOnGe8xF6SpzKmEQmecx2wjUp9D_BbiHa3NMNPazi4zxuUJeTTVOHx6ei_I7bu3X67eNzcfrz9cXd40Tkm-NGrqus4PbnDcC9eNExPaylE68MKOViuplYIRpOxwkGC7TvQKvPW9EBYGLS7IqzV3n9P3A5bFzKE43O1quXQohjOoGJf_BZnsdYWPiXIFXU6lZJzMPofZ5p-GgTlqMFuzajBHDQaUqRrq2fNT_mGc0f89Ou1egZcnwJa69FTnc6H84ThoxXp5_P_Fyk02GXuXK3P7mQMTwJSUHPpKvFkJrMPeB8ymuIDRoQ-5ijU-hX93_QWaj7JU</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Radjenović, J.</creator><creator>Petrović, M.</creator><creator>Ventura, F.</creator><creator>Barceló, D.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QH</scope><scope>7QO</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20080801</creationdate><title>Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment</title><author>Radjenović, J. ; Petrović, M. ; Ventura, F. ; Barceló, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-5f777d9c9c2d3c7bf136a4b4c0d3aba6546550b0447e940a773850dad833a0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>brine stream</topic><topic>chemical concentration</topic><topic>Drinking water treatment</topic><topic>drug residues</topic><topic>Drug Residues - chemistry</topic><topic>drugs</topic><topic>effluents</topic><topic>Exact sciences and technology</topic><topic>filtration</topic><topic>Filtration - instrumentation</topic><topic>Filtration - methods</topic><topic>groundwater</topic><topic>groundwater contamination</topic><topic>Molecular Structure</topic><topic>Nanofiltration</topic><topic>Nanostructures</topic><topic>Osmosis</topic><topic>Other industrial wastes. Sewage sludge</topic><topic>Pharmaceutical Preparations - chemistry</topic><topic>Pharmaceuticals</topic><topic>Pollution</topic><topic>Rejection efficiency</topic><topic>Reverse osmosis</topic><topic>rivers</topic><topic>surface water</topic><topic>Wastes</topic><topic>wastewater</topic><topic>Water - chemistry</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Water Purification - instrumentation</topic><topic>Water Purification - methods</topic><topic>water treatment</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radjenović, J.</creatorcontrib><creatorcontrib>Petrović, M.</creatorcontrib><creatorcontrib>Ventura, F.</creatorcontrib><creatorcontrib>Barceló, D.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radjenović, J.</au><au>Petrović, M.</au><au>Ventura, F.</au><au>Barceló, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>42</volume><issue>14</issue><spage>3601</spage><epage>3610</epage><pages>3601-3610</pages><issn>0043-1354</issn><eissn>1879-2448</eissn><coden>WATRAG</coden><abstract>This paper investigates the removal of a broad range of pharmaceuticals during nanofiltration (NF) and reverse osmosis (RO) applied in a full-scale drinking water treatment plant (DWTP) using groundwater. Pharmaceutical residues detected in groundwater used as feed water in all five sampling campaigns were analgesics and anti-inflammatory drugs such as ketoprofen, diclofenac, acetaminophen and propyphenazone, β-blockers sotalol and metoprolol, an antiepileptic drug carbamazepine, the antibiotic sulfamethoxazole, a lipid regulator gemfibrozil and a diuretic hydrochlorothiazide. The highest concentrations in groundwater were recorded for hydrochlorothiazide (58.6–2548 ng L −1), ketoprofen (&lt;MQL–314 ng L −1), diclofenac (60.2–219.4 ng L −1), propyphenazone (51.5–295.8 ng L −1) and carbamazepine (8.7–166.5 ng L −1). Excellent overall performance of both NF and RO was noted, with high rejection percentages for almost all of the pharmaceuticals investigated (&gt;85%). Deteriorations in retentions on NF and RO membranes were observed for acetaminophen (44.8–73 %), gemfibrozil (50–70 %) and mefenamic acid (30–50%). Furthermore, since several pharmaceutical residues were detected in the brine stream of NF and RO processes at concentrations of several hundreds nanogram per litre, its disposal to a near-by river can represent a possible risk implication of this type of treatment.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>18656225</pmid><doi>10.1016/j.watres.2008.05.020</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1354
ispartof Water research (Oxford), 2008-08, Vol.42 (14), p.3601-3610
issn 0043-1354
1879-2448
language eng
recordid cdi_proquest_miscellaneous_21009624
source MEDLINE; Elsevier ScienceDirect Journals
subjects Applied sciences
brine stream
chemical concentration
Drinking water treatment
drug residues
Drug Residues - chemistry
drugs
effluents
Exact sciences and technology
filtration
Filtration - instrumentation
Filtration - methods
groundwater
groundwater contamination
Molecular Structure
Nanofiltration
Nanostructures
Osmosis
Other industrial wastes. Sewage sludge
Pharmaceutical Preparations - chemistry
Pharmaceuticals
Pollution
Rejection efficiency
Reverse osmosis
rivers
surface water
Wastes
wastewater
Water - chemistry
Water Pollutants, Chemical - chemistry
Water Purification - instrumentation
Water Purification - methods
water treatment
Water treatment and pollution
title Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A36%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rejection%20of%20pharmaceuticals%20in%20nanofiltration%20and%20reverse%20osmosis%20membrane%20drinking%20water%20treatment&rft.jtitle=Water%20research%20(Oxford)&rft.au=Radjenovi%C4%87,%20J.&rft.date=2008-08-01&rft.volume=42&rft.issue=14&rft.spage=3601&rft.epage=3610&rft.pages=3601-3610&rft.issn=0043-1354&rft.eissn=1879-2448&rft.coden=WATRAG&rft_id=info:doi/10.1016/j.watres.2008.05.020&rft_dat=%3Cproquest_cross%3E14862106%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14862106&rft_id=info:pmid/18656225&rft_els_id=S0043135408002248&rfr_iscdi=true