Secondary eyewall formation in two idealized, full-physics modeled hurricanes
Prevailing hypotheses for secondary eyewall formation are examined using data sets from two high‐resolution mesoscale numerical model simulations of the long‐time evolution of an idealized hurricane vortex in a quiescent tropical environment with constant background rotation. The modeled hurricanes...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research: Atmospheres 2008-06, Vol.113 (D12), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D12 |
container_start_page | |
container_title | Journal of Geophysical Research: Atmospheres |
container_volume | 113 |
creator | Terwey, Wesley D. Montgomery, Michael T. |
description | Prevailing hypotheses for secondary eyewall formation are examined using data sets from two high‐resolution mesoscale numerical model simulations of the long‐time evolution of an idealized hurricane vortex in a quiescent tropical environment with constant background rotation. The modeled hurricanes each undergo a secondary eyewall cycle, casting doubt on a number of other authors' hypotheses for secondary eyewall formation due to idealizations present in the simulation formulations. A new hypothesis for secondary eyewall formation is proposed here and is shown to be supported by these high‐resolution numerical simulations. The hypothesis requires the existence of a region with moderate horizontal strain deformation and a sufficient low‐level radial potential vorticity gradient associated with the primary swirling flow, moist convective potential, and a wind‐moisture feedback process at the air‐sea interface to form the secondary eyewall. The crux of the formation process is the generation of a finite‐amplitude lower‐tropospheric cyclonic jet outside the primary eyewall with a jet width on the order of a local effective beta scale determined by the mean low‐level radial potential vorticity gradient and the root‐mean square eddy velocity. This jet is hypothesized to be generated by the anisotropic upscale cascade and axisymmetrization of convectively generated vorticity anomalies through horizontal shear turbulence and sheared vortex Rossby waves as well as by the convergence of system‐scale cyclonic vorticity by the low‐level radial inflow associated with the increased convection. Possible application to the problem of forecasting secondary eyewall events is briefly considered. |
doi_str_mv | 10.1029/2007JD008897 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21004265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730049749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5156-f7709896dc6709eca0f58ebcc8aae6a223314e077472a6b6ad1e4983bad71a963</originalsourceid><addsrcrecordid>eNp9kE9PGzEQxa2qlRpRbv0Ae2nVA9uOZ3dt77HiT1qgIBWqHq2Jd1YYnN1gJwrh0-M0CPXEXGYOv_f05gnxUcJXCdh-QwB9egRgTKvfiAnKRpWIgG_FBGRtSkDU78V-SreQp25UDXIifl2xG4eO4qbgDa8phKIf45yWfhwKPxTL9Vj4jin4R-4Oin4VQrm42STvUjEfOw7cFTerGL2jgdMH8a6nkHj_ee-JPyfH14c_yvPL6c_D7-ela7axeq2hNa3qnMoHO4K-MTxzzhCxIsSqkjWD1rVGUjNFneS6NdWMOi2pVdWe-LzzXcTxfsVpaec-OQ4hhxhXyaLMH6JqMvjlVVDqKpOtrtuMHuxQF8eUIvd2Ef08F2Ml2G3D9v-GM_7p2ZmSo9BHGpxPLxqEBhWYbYJqx6194M2rnvZ0-vtI1vDvwXKn8mnJDy8qindW6Uo39u_F1DZqqow8Q4vVExRzl5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730049749</pqid></control><display><type>article</type><title>Secondary eyewall formation in two idealized, full-physics modeled hurricanes</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Terwey, Wesley D. ; Montgomery, Michael T.</creator><creatorcontrib>Terwey, Wesley D. ; Montgomery, Michael T.</creatorcontrib><description>Prevailing hypotheses for secondary eyewall formation are examined using data sets from two high‐resolution mesoscale numerical model simulations of the long‐time evolution of an idealized hurricane vortex in a quiescent tropical environment with constant background rotation. The modeled hurricanes each undergo a secondary eyewall cycle, casting doubt on a number of other authors' hypotheses for secondary eyewall formation due to idealizations present in the simulation formulations. A new hypothesis for secondary eyewall formation is proposed here and is shown to be supported by these high‐resolution numerical simulations. The hypothesis requires the existence of a region with moderate horizontal strain deformation and a sufficient low‐level radial potential vorticity gradient associated with the primary swirling flow, moist convective potential, and a wind‐moisture feedback process at the air‐sea interface to form the secondary eyewall. The crux of the formation process is the generation of a finite‐amplitude lower‐tropospheric cyclonic jet outside the primary eyewall with a jet width on the order of a local effective beta scale determined by the mean low‐level radial potential vorticity gradient and the root‐mean square eddy velocity. This jet is hypothesized to be generated by the anisotropic upscale cascade and axisymmetrization of convectively generated vorticity anomalies through horizontal shear turbulence and sheared vortex Rossby waves as well as by the convergence of system‐scale cyclonic vorticity by the low‐level radial inflow associated with the increased convection. Possible application to the problem of forecasting secondary eyewall events is briefly considered.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2007JD008897</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Computational fluid dynamics ; Computer simulation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fluid flow ; Hurricane intensity ; Hurricanes ; Mathematical models ; secondary eyewalls ; Turbulence ; Turbulent flow ; Vorticity</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2008-06, Vol.113 (D12), p.n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5156-f7709896dc6709eca0f58ebcc8aae6a223314e077472a6b6ad1e4983bad71a963</citedby><cites>FETCH-LOGICAL-c5156-f7709896dc6709eca0f58ebcc8aae6a223314e077472a6b6ad1e4983bad71a963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007JD008897$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007JD008897$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20526085$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Terwey, Wesley D.</creatorcontrib><creatorcontrib>Montgomery, Michael T.</creatorcontrib><title>Secondary eyewall formation in two idealized, full-physics modeled hurricanes</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>Prevailing hypotheses for secondary eyewall formation are examined using data sets from two high‐resolution mesoscale numerical model simulations of the long‐time evolution of an idealized hurricane vortex in a quiescent tropical environment with constant background rotation. The modeled hurricanes each undergo a secondary eyewall cycle, casting doubt on a number of other authors' hypotheses for secondary eyewall formation due to idealizations present in the simulation formulations. A new hypothesis for secondary eyewall formation is proposed here and is shown to be supported by these high‐resolution numerical simulations. The hypothesis requires the existence of a region with moderate horizontal strain deformation and a sufficient low‐level radial potential vorticity gradient associated with the primary swirling flow, moist convective potential, and a wind‐moisture feedback process at the air‐sea interface to form the secondary eyewall. The crux of the formation process is the generation of a finite‐amplitude lower‐tropospheric cyclonic jet outside the primary eyewall with a jet width on the order of a local effective beta scale determined by the mean low‐level radial potential vorticity gradient and the root‐mean square eddy velocity. This jet is hypothesized to be generated by the anisotropic upscale cascade and axisymmetrization of convectively generated vorticity anomalies through horizontal shear turbulence and sheared vortex Rossby waves as well as by the convergence of system‐scale cyclonic vorticity by the low‐level radial inflow associated with the increased convection. Possible application to the problem of forecasting secondary eyewall events is briefly considered.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Hurricane intensity</subject><subject>Hurricanes</subject><subject>Mathematical models</subject><subject>secondary eyewalls</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Vorticity</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PGzEQxa2qlRpRbv0Ae2nVA9uOZ3dt77HiT1qgIBWqHq2Jd1YYnN1gJwrh0-M0CPXEXGYOv_f05gnxUcJXCdh-QwB9egRgTKvfiAnKRpWIgG_FBGRtSkDU78V-SreQp25UDXIifl2xG4eO4qbgDa8phKIf45yWfhwKPxTL9Vj4jin4R-4Oin4VQrm42STvUjEfOw7cFTerGL2jgdMH8a6nkHj_ee-JPyfH14c_yvPL6c_D7-ela7axeq2hNa3qnMoHO4K-MTxzzhCxIsSqkjWD1rVGUjNFneS6NdWMOi2pVdWe-LzzXcTxfsVpaec-OQ4hhxhXyaLMH6JqMvjlVVDqKpOtrtuMHuxQF8eUIvd2Ef08F2Ml2G3D9v-GM_7p2ZmSo9BHGpxPLxqEBhWYbYJqx6194M2rnvZ0-vtI1vDvwXKn8mnJDy8qindW6Uo39u_F1DZqqow8Q4vVExRzl5U</recordid><startdate>20080627</startdate><enddate>20080627</enddate><creator>Terwey, Wesley D.</creator><creator>Montgomery, Michael T.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20080627</creationdate><title>Secondary eyewall formation in two idealized, full-physics modeled hurricanes</title><author>Terwey, Wesley D. ; Montgomery, Michael T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5156-f7709896dc6709eca0f58ebcc8aae6a223314e077472a6b6ad1e4983bad71a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Hurricane intensity</topic><topic>Hurricanes</topic><topic>Mathematical models</topic><topic>secondary eyewalls</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terwey, Wesley D.</creatorcontrib><creatorcontrib>Montgomery, Michael T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terwey, Wesley D.</au><au>Montgomery, Michael T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary eyewall formation in two idealized, full-physics modeled hurricanes</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2008-06-27</date><risdate>2008</risdate><volume>113</volume><issue>D12</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Prevailing hypotheses for secondary eyewall formation are examined using data sets from two high‐resolution mesoscale numerical model simulations of the long‐time evolution of an idealized hurricane vortex in a quiescent tropical environment with constant background rotation. The modeled hurricanes each undergo a secondary eyewall cycle, casting doubt on a number of other authors' hypotheses for secondary eyewall formation due to idealizations present in the simulation formulations. A new hypothesis for secondary eyewall formation is proposed here and is shown to be supported by these high‐resolution numerical simulations. The hypothesis requires the existence of a region with moderate horizontal strain deformation and a sufficient low‐level radial potential vorticity gradient associated with the primary swirling flow, moist convective potential, and a wind‐moisture feedback process at the air‐sea interface to form the secondary eyewall. The crux of the formation process is the generation of a finite‐amplitude lower‐tropospheric cyclonic jet outside the primary eyewall with a jet width on the order of a local effective beta scale determined by the mean low‐level radial potential vorticity gradient and the root‐mean square eddy velocity. This jet is hypothesized to be generated by the anisotropic upscale cascade and axisymmetrization of convectively generated vorticity anomalies through horizontal shear turbulence and sheared vortex Rossby waves as well as by the convergence of system‐scale cyclonic vorticity by the low‐level radial inflow associated with the increased convection. Possible application to the problem of forecasting secondary eyewall events is briefly considered.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007JD008897</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research: Atmospheres, 2008-06, Vol.113 (D12), p.n/a |
issn | 0148-0227 2169-897X 2156-2202 2169-8996 |
language | eng |
recordid | cdi_proquest_miscellaneous_21004265 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Computational fluid dynamics Computer simulation Earth sciences Earth, ocean, space Exact sciences and technology Fluid flow Hurricane intensity Hurricanes Mathematical models secondary eyewalls Turbulence Turbulent flow Vorticity |
title | Secondary eyewall formation in two idealized, full-physics modeled hurricanes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20eyewall%20formation%20in%20two%20idealized,%20full-physics%20modeled%20hurricanes&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Terwey,%20Wesley%20D.&rft.date=2008-06-27&rft.volume=113&rft.issue=D12&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2007JD008897&rft_dat=%3Cproquest_cross%3E1730049749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730049749&rft_id=info:pmid/&rfr_iscdi=true |