Secondary eyewall formation in two idealized, full-physics modeled hurricanes

Prevailing hypotheses for secondary eyewall formation are examined using data sets from two high‐resolution mesoscale numerical model simulations of the long‐time evolution of an idealized hurricane vortex in a quiescent tropical environment with constant background rotation. The modeled hurricanes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2008-06, Vol.113 (D12), p.n/a
Hauptverfasser: Terwey, Wesley D., Montgomery, Michael T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D12
container_start_page
container_title Journal of Geophysical Research: Atmospheres
container_volume 113
creator Terwey, Wesley D.
Montgomery, Michael T.
description Prevailing hypotheses for secondary eyewall formation are examined using data sets from two high‐resolution mesoscale numerical model simulations of the long‐time evolution of an idealized hurricane vortex in a quiescent tropical environment with constant background rotation. The modeled hurricanes each undergo a secondary eyewall cycle, casting doubt on a number of other authors' hypotheses for secondary eyewall formation due to idealizations present in the simulation formulations. A new hypothesis for secondary eyewall formation is proposed here and is shown to be supported by these high‐resolution numerical simulations. The hypothesis requires the existence of a region with moderate horizontal strain deformation and a sufficient low‐level radial potential vorticity gradient associated with the primary swirling flow, moist convective potential, and a wind‐moisture feedback process at the air‐sea interface to form the secondary eyewall. The crux of the formation process is the generation of a finite‐amplitude lower‐tropospheric cyclonic jet outside the primary eyewall with a jet width on the order of a local effective beta scale determined by the mean low‐level radial potential vorticity gradient and the root‐mean square eddy velocity. This jet is hypothesized to be generated by the anisotropic upscale cascade and axisymmetrization of convectively generated vorticity anomalies through horizontal shear turbulence and sheared vortex Rossby waves as well as by the convergence of system‐scale cyclonic vorticity by the low‐level radial inflow associated with the increased convection. Possible application to the problem of forecasting secondary eyewall events is briefly considered.
doi_str_mv 10.1029/2007JD008897
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_21004265</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1730049749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5156-f7709896dc6709eca0f58ebcc8aae6a223314e077472a6b6ad1e4983bad71a963</originalsourceid><addsrcrecordid>eNp9kE9PGzEQxa2qlRpRbv0Ae2nVA9uOZ3dt77HiT1qgIBWqHq2Jd1YYnN1gJwrh0-M0CPXEXGYOv_f05gnxUcJXCdh-QwB9egRgTKvfiAnKRpWIgG_FBGRtSkDU78V-SreQp25UDXIifl2xG4eO4qbgDa8phKIf45yWfhwKPxTL9Vj4jin4R-4Oin4VQrm42STvUjEfOw7cFTerGL2jgdMH8a6nkHj_ee-JPyfH14c_yvPL6c_D7-ela7axeq2hNa3qnMoHO4K-MTxzzhCxIsSqkjWD1rVGUjNFneS6NdWMOi2pVdWe-LzzXcTxfsVpaec-OQ4hhxhXyaLMH6JqMvjlVVDqKpOtrtuMHuxQF8eUIvd2Ef08F2Ml2G3D9v-GM_7p2ZmSo9BHGpxPLxqEBhWYbYJqx6194M2rnvZ0-vtI1vDvwXKn8mnJDy8qindW6Uo39u_F1DZqqow8Q4vVExRzl5U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1730049749</pqid></control><display><type>article</type><title>Secondary eyewall formation in two idealized, full-physics modeled hurricanes</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Terwey, Wesley D. ; Montgomery, Michael T.</creator><creatorcontrib>Terwey, Wesley D. ; Montgomery, Michael T.</creatorcontrib><description>Prevailing hypotheses for secondary eyewall formation are examined using data sets from two high‐resolution mesoscale numerical model simulations of the long‐time evolution of an idealized hurricane vortex in a quiescent tropical environment with constant background rotation. The modeled hurricanes each undergo a secondary eyewall cycle, casting doubt on a number of other authors' hypotheses for secondary eyewall formation due to idealizations present in the simulation formulations. A new hypothesis for secondary eyewall formation is proposed here and is shown to be supported by these high‐resolution numerical simulations. The hypothesis requires the existence of a region with moderate horizontal strain deformation and a sufficient low‐level radial potential vorticity gradient associated with the primary swirling flow, moist convective potential, and a wind‐moisture feedback process at the air‐sea interface to form the secondary eyewall. The crux of the formation process is the generation of a finite‐amplitude lower‐tropospheric cyclonic jet outside the primary eyewall with a jet width on the order of a local effective beta scale determined by the mean low‐level radial potential vorticity gradient and the root‐mean square eddy velocity. This jet is hypothesized to be generated by the anisotropic upscale cascade and axisymmetrization of convectively generated vorticity anomalies through horizontal shear turbulence and sheared vortex Rossby waves as well as by the convergence of system‐scale cyclonic vorticity by the low‐level radial inflow associated with the increased convection. Possible application to the problem of forecasting secondary eyewall events is briefly considered.</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2007JD008897</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Computational fluid dynamics ; Computer simulation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fluid flow ; Hurricane intensity ; Hurricanes ; Mathematical models ; secondary eyewalls ; Turbulence ; Turbulent flow ; Vorticity</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2008-06, Vol.113 (D12), p.n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5156-f7709896dc6709eca0f58ebcc8aae6a223314e077472a6b6ad1e4983bad71a963</citedby><cites>FETCH-LOGICAL-c5156-f7709896dc6709eca0f58ebcc8aae6a223314e077472a6b6ad1e4983bad71a963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007JD008897$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007JD008897$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20526085$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Terwey, Wesley D.</creatorcontrib><creatorcontrib>Montgomery, Michael T.</creatorcontrib><title>Secondary eyewall formation in two idealized, full-physics modeled hurricanes</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>Prevailing hypotheses for secondary eyewall formation are examined using data sets from two high‐resolution mesoscale numerical model simulations of the long‐time evolution of an idealized hurricane vortex in a quiescent tropical environment with constant background rotation. The modeled hurricanes each undergo a secondary eyewall cycle, casting doubt on a number of other authors' hypotheses for secondary eyewall formation due to idealizations present in the simulation formulations. A new hypothesis for secondary eyewall formation is proposed here and is shown to be supported by these high‐resolution numerical simulations. The hypothesis requires the existence of a region with moderate horizontal strain deformation and a sufficient low‐level radial potential vorticity gradient associated with the primary swirling flow, moist convective potential, and a wind‐moisture feedback process at the air‐sea interface to form the secondary eyewall. The crux of the formation process is the generation of a finite‐amplitude lower‐tropospheric cyclonic jet outside the primary eyewall with a jet width on the order of a local effective beta scale determined by the mean low‐level radial potential vorticity gradient and the root‐mean square eddy velocity. This jet is hypothesized to be generated by the anisotropic upscale cascade and axisymmetrization of convectively generated vorticity anomalies through horizontal shear turbulence and sheared vortex Rossby waves as well as by the convergence of system‐scale cyclonic vorticity by the low‐level radial inflow associated with the increased convection. Possible application to the problem of forecasting secondary eyewall events is briefly considered.</description><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Hurricane intensity</subject><subject>Hurricanes</subject><subject>Mathematical models</subject><subject>secondary eyewalls</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Vorticity</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE9PGzEQxa2qlRpRbv0Ae2nVA9uOZ3dt77HiT1qgIBWqHq2Jd1YYnN1gJwrh0-M0CPXEXGYOv_f05gnxUcJXCdh-QwB9egRgTKvfiAnKRpWIgG_FBGRtSkDU78V-SreQp25UDXIifl2xG4eO4qbgDa8phKIf45yWfhwKPxTL9Vj4jin4R-4Oin4VQrm42STvUjEfOw7cFTerGL2jgdMH8a6nkHj_ee-JPyfH14c_yvPL6c_D7-ela7axeq2hNa3qnMoHO4K-MTxzzhCxIsSqkjWD1rVGUjNFneS6NdWMOi2pVdWe-LzzXcTxfsVpaec-OQ4hhxhXyaLMH6JqMvjlVVDqKpOtrtuMHuxQF8eUIvd2Ef08F2Ml2G3D9v-GM_7p2ZmSo9BHGpxPLxqEBhWYbYJqx6194M2rnvZ0-vtI1vDvwXKn8mnJDy8qindW6Uo39u_F1DZqqow8Q4vVExRzl5U</recordid><startdate>20080627</startdate><enddate>20080627</enddate><creator>Terwey, Wesley D.</creator><creator>Montgomery, Michael T.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>20080627</creationdate><title>Secondary eyewall formation in two idealized, full-physics modeled hurricanes</title><author>Terwey, Wesley D. ; Montgomery, Michael T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5156-f7709896dc6709eca0f58ebcc8aae6a223314e077472a6b6ad1e4983bad71a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Hurricane intensity</topic><topic>Hurricanes</topic><topic>Mathematical models</topic><topic>secondary eyewalls</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Terwey, Wesley D.</creatorcontrib><creatorcontrib>Montgomery, Michael T.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Terwey, Wesley D.</au><au>Montgomery, Michael T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary eyewall formation in two idealized, full-physics modeled hurricanes</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2008-06-27</date><risdate>2008</risdate><volume>113</volume><issue>D12</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Prevailing hypotheses for secondary eyewall formation are examined using data sets from two high‐resolution mesoscale numerical model simulations of the long‐time evolution of an idealized hurricane vortex in a quiescent tropical environment with constant background rotation. The modeled hurricanes each undergo a secondary eyewall cycle, casting doubt on a number of other authors' hypotheses for secondary eyewall formation due to idealizations present in the simulation formulations. A new hypothesis for secondary eyewall formation is proposed here and is shown to be supported by these high‐resolution numerical simulations. The hypothesis requires the existence of a region with moderate horizontal strain deformation and a sufficient low‐level radial potential vorticity gradient associated with the primary swirling flow, moist convective potential, and a wind‐moisture feedback process at the air‐sea interface to form the secondary eyewall. The crux of the formation process is the generation of a finite‐amplitude lower‐tropospheric cyclonic jet outside the primary eyewall with a jet width on the order of a local effective beta scale determined by the mean low‐level radial potential vorticity gradient and the root‐mean square eddy velocity. This jet is hypothesized to be generated by the anisotropic upscale cascade and axisymmetrization of convectively generated vorticity anomalies through horizontal shear turbulence and sheared vortex Rossby waves as well as by the convergence of system‐scale cyclonic vorticity by the low‐level radial inflow associated with the increased convection. Possible application to the problem of forecasting secondary eyewall events is briefly considered.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007JD008897</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2008-06, Vol.113 (D12), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_proquest_miscellaneous_21004265
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Computational fluid dynamics
Computer simulation
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fluid flow
Hurricane intensity
Hurricanes
Mathematical models
secondary eyewalls
Turbulence
Turbulent flow
Vorticity
title Secondary eyewall formation in two idealized, full-physics modeled hurricanes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20eyewall%20formation%20in%20two%20idealized,%20full-physics%20modeled%20hurricanes&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Terwey,%20Wesley%20D.&rft.date=2008-06-27&rft.volume=113&rft.issue=D12&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2007JD008897&rft_dat=%3Cproquest_cross%3E1730049749%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1730049749&rft_id=info:pmid/&rfr_iscdi=true