Deterministic teleportation of a quantum gate between two logical qubits
A quantum computer has the potential to efficiently solve problems that are intractable for classical computers. However, constructing a large-scale quantum processor is challenging because of the errors and noise that are inherent in real-world quantum systems. One approach to addressing this chall...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-09, Vol.561 (7723), p.368-373 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 373 |
---|---|
container_issue | 7723 |
container_start_page | 368 |
container_title | Nature (London) |
container_volume | 561 |
creator | Chou, Kevin S. Blumoff, Jacob Z. Wang, Christopher S. Reinhold, Philip C. Axline, Christopher J. Gao, Yvonne Y. Frunzio, L. Devoret, M. H. Jiang, Liang Schoelkopf, R. J. |
description | A quantum computer has the potential to efficiently solve problems that are intractable for classical computers. However, constructing a large-scale quantum processor is challenging because of the errors and noise that are inherent in real-world quantum systems. One approach to addressing this challenge is to utilize modularity—a strategy used frequently in nature and engineering to build complex systems robustly. Such an approach manages complexity and uncertainty by assembling small, specialized components into a larger architecture. These considerations have motivated the development of a quantum modular architecture, in which separate quantum systems are connected into a quantum network via communication channels
1
,
2
. In this architecture, an essential tool for universal quantum computation is the teleportation of an entangling quantum gate
3
–
5
, but such teleportation has hitherto not been realized as a deterministic operation. Here we experimentally demonstrate the teleportation of a controlled-NOT (CNOT) gate, which we make deterministic by using real-time adaptive control. In addition, we take a crucial step towards implementing robust, error-correctable modules by enacting the gate between two logical qubits, encoding quantum information redundantly in the states of superconducting cavities
6
. By using such an error-correctable encoding, our teleported gate achieves a process fidelity of 79 per cent. Teleported gates have implications for fault-tolerant quantum computation
3
, and when realized within a network can have broad applications in quantum communication, metrology and simulations
1
,
2
,
7
. Our results illustrate a compelling approach for implementing multi-qubit operations on logical qubits and, if integrated with quantum error-correction protocols, indicate a promising path towards fault-tolerant quantum computation using a modular architecture.
A teleported controlled-NOT gate is realized experimentally between two logical qubits implemented as superconducting cavity quantum memories, thus demonstrating an important tool for universal computation in a quantum modular architecture. |
doi_str_mv | 10.1038/s41586-018-0470-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2100331532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572956950</galeid><sourcerecordid>A572956950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-c19bbdd88b64d69e2892020c50e4974b4a8ccde8b3ce663e093217bf1f4be7db3</originalsourceid><addsrcrecordid>eNp10l1rFDEUBuAgil2rP8AbGeyNIlOTSSaTuVzWjxaKgla8DEnmzJAyk-wmGer-e7Ns1a5syUUg5zmHkLwIvST4nGAq3kdGasFLTESJWYPL7SO0IKzhJeOieYwWGFe5Iig_Qc9ivMEY16RhT9EJzS11i8UCXXyABGGyzsZkTZFghLUPSSXrXeH7QhWbWbk0T8WgEhQa0i2AK9KtL0Y_WKPGDLRN8Tl60qsxwou7_RT9-PTxenVRXn39fLlaXpWGM5xKQ1qtu04IzVnHW6hEW-EKmxoDaxummRLGdCA0NcA5BdzSijS6Jz3T0HSanqI3-7nr4DczxCQnGw2Mo3Lg5ygrgjGlpKZVpmf_0Rs_B5dvlxVpaCUEu6cGNYK0rvcpKLMbKpd1U7U1b2ucVXlEDeAgqNE76G0-PvCvj3iztht5H50fQXl1MFlzdOrbg4ZsEvxKg5pjlJffvx3adw_b5fXP1ZdDTfbaBB9jgF6ug51U2EqC5S5sch82mZMjd2GT29zz6u59Zz1B97fjT7oyqPYg5pIbIPz7gIen_gZcMNqy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117328842</pqid></control><display><type>article</type><title>Deterministic teleportation of a quantum gate between two logical qubits</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Chou, Kevin S. ; Blumoff, Jacob Z. ; Wang, Christopher S. ; Reinhold, Philip C. ; Axline, Christopher J. ; Gao, Yvonne Y. ; Frunzio, L. ; Devoret, M. H. ; Jiang, Liang ; Schoelkopf, R. J.</creator><creatorcontrib>Chou, Kevin S. ; Blumoff, Jacob Z. ; Wang, Christopher S. ; Reinhold, Philip C. ; Axline, Christopher J. ; Gao, Yvonne Y. ; Frunzio, L. ; Devoret, M. H. ; Jiang, Liang ; Schoelkopf, R. J.</creatorcontrib><description>A quantum computer has the potential to efficiently solve problems that are intractable for classical computers. However, constructing a large-scale quantum processor is challenging because of the errors and noise that are inherent in real-world quantum systems. One approach to addressing this challenge is to utilize modularity—a strategy used frequently in nature and engineering to build complex systems robustly. Such an approach manages complexity and uncertainty by assembling small, specialized components into a larger architecture. These considerations have motivated the development of a quantum modular architecture, in which separate quantum systems are connected into a quantum network via communication channels
1
,
2
. In this architecture, an essential tool for universal quantum computation is the teleportation of an entangling quantum gate
3
–
5
, but such teleportation has hitherto not been realized as a deterministic operation. Here we experimentally demonstrate the teleportation of a controlled-NOT (CNOT) gate, which we make deterministic by using real-time adaptive control. In addition, we take a crucial step towards implementing robust, error-correctable modules by enacting the gate between two logical qubits, encoding quantum information redundantly in the states of superconducting cavities
6
. By using such an error-correctable encoding, our teleported gate achieves a process fidelity of 79 per cent. Teleported gates have implications for fault-tolerant quantum computation
3
, and when realized within a network can have broad applications in quantum communication, metrology and simulations
1
,
2
,
7
. Our results illustrate a compelling approach for implementing multi-qubit operations on logical qubits and, if integrated with quantum error-correction protocols, indicate a promising path towards fault-tolerant quantum computation using a modular architecture.
A teleported controlled-NOT gate is realized experimentally between two logical qubits implemented as superconducting cavity quantum memories, thus demonstrating an important tool for universal computation in a quantum modular architecture.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-018-0470-y</identifier><identifier>PMID: 30185908</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/1139 ; 639/766/483/2802 ; 639/766/483/481 ; Adaptive control ; Architecture ; Atoms ; Coding ; Communication ; Complex systems ; Complexity ; Computation ; Computer simulation ; Computers ; Data processing services ; Error correction ; Fault tolerance ; Humanities and Social Sciences ; Information storage ; Letter ; Microprocessors ; Modularity ; multidisciplinary ; Protocol (computers) ; Quantum computers ; Quantum computing ; Quantum mechanics ; Quantum phenomena ; Quantum teleportation ; Quantum theory ; Qubits (quantum computing) ; Science ; Science (multidisciplinary) ; Superconductors</subject><ispartof>Nature (London), 2018-09, Vol.561 (7723), p.368-373</ispartof><rights>Springer Nature Limited 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Sep 20, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-c19bbdd88b64d69e2892020c50e4974b4a8ccde8b3ce663e093217bf1f4be7db3</citedby><cites>FETCH-LOGICAL-c640t-c19bbdd88b64d69e2892020c50e4974b4a8ccde8b3ce663e093217bf1f4be7db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-018-0470-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-018-0470-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30185908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chou, Kevin S.</creatorcontrib><creatorcontrib>Blumoff, Jacob Z.</creatorcontrib><creatorcontrib>Wang, Christopher S.</creatorcontrib><creatorcontrib>Reinhold, Philip C.</creatorcontrib><creatorcontrib>Axline, Christopher J.</creatorcontrib><creatorcontrib>Gao, Yvonne Y.</creatorcontrib><creatorcontrib>Frunzio, L.</creatorcontrib><creatorcontrib>Devoret, M. H.</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Schoelkopf, R. J.</creatorcontrib><title>Deterministic teleportation of a quantum gate between two logical qubits</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>A quantum computer has the potential to efficiently solve problems that are intractable for classical computers. However, constructing a large-scale quantum processor is challenging because of the errors and noise that are inherent in real-world quantum systems. One approach to addressing this challenge is to utilize modularity—a strategy used frequently in nature and engineering to build complex systems robustly. Such an approach manages complexity and uncertainty by assembling small, specialized components into a larger architecture. These considerations have motivated the development of a quantum modular architecture, in which separate quantum systems are connected into a quantum network via communication channels
1
,
2
. In this architecture, an essential tool for universal quantum computation is the teleportation of an entangling quantum gate
3
–
5
, but such teleportation has hitherto not been realized as a deterministic operation. Here we experimentally demonstrate the teleportation of a controlled-NOT (CNOT) gate, which we make deterministic by using real-time adaptive control. In addition, we take a crucial step towards implementing robust, error-correctable modules by enacting the gate between two logical qubits, encoding quantum information redundantly in the states of superconducting cavities
6
. By using such an error-correctable encoding, our teleported gate achieves a process fidelity of 79 per cent. Teleported gates have implications for fault-tolerant quantum computation
3
, and when realized within a network can have broad applications in quantum communication, metrology and simulations
1
,
2
,
7
. Our results illustrate a compelling approach for implementing multi-qubit operations on logical qubits and, if integrated with quantum error-correction protocols, indicate a promising path towards fault-tolerant quantum computation using a modular architecture.
A teleported controlled-NOT gate is realized experimentally between two logical qubits implemented as superconducting cavity quantum memories, thus demonstrating an important tool for universal computation in a quantum modular architecture.</description><subject>639/766/483/1139</subject><subject>639/766/483/2802</subject><subject>639/766/483/481</subject><subject>Adaptive control</subject><subject>Architecture</subject><subject>Atoms</subject><subject>Coding</subject><subject>Communication</subject><subject>Complex systems</subject><subject>Complexity</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Computers</subject><subject>Data processing services</subject><subject>Error correction</subject><subject>Fault tolerance</subject><subject>Humanities and Social Sciences</subject><subject>Information storage</subject><subject>Letter</subject><subject>Microprocessors</subject><subject>Modularity</subject><subject>multidisciplinary</subject><subject>Protocol (computers)</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum mechanics</subject><subject>Quantum phenomena</subject><subject>Quantum teleportation</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconductors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10l1rFDEUBuAgil2rP8AbGeyNIlOTSSaTuVzWjxaKgla8DEnmzJAyk-wmGer-e7Ns1a5syUUg5zmHkLwIvST4nGAq3kdGasFLTESJWYPL7SO0IKzhJeOieYwWGFe5Iig_Qc9ivMEY16RhT9EJzS11i8UCXXyABGGyzsZkTZFghLUPSSXrXeH7QhWbWbk0T8WgEhQa0i2AK9KtL0Y_WKPGDLRN8Tl60qsxwou7_RT9-PTxenVRXn39fLlaXpWGM5xKQ1qtu04IzVnHW6hEW-EKmxoDaxummRLGdCA0NcA5BdzSijS6Jz3T0HSanqI3-7nr4DczxCQnGw2Mo3Lg5ygrgjGlpKZVpmf_0Rs_B5dvlxVpaCUEu6cGNYK0rvcpKLMbKpd1U7U1b2ucVXlEDeAgqNE76G0-PvCvj3iztht5H50fQXl1MFlzdOrbg4ZsEvxKg5pjlJffvx3adw_b5fXP1ZdDTfbaBB9jgF6ug51U2EqC5S5sch82mZMjd2GT29zz6u59Zz1B97fjT7oyqPYg5pIbIPz7gIen_gZcMNqy</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Chou, Kevin S.</creator><creator>Blumoff, Jacob Z.</creator><creator>Wang, Christopher S.</creator><creator>Reinhold, Philip C.</creator><creator>Axline, Christopher J.</creator><creator>Gao, Yvonne Y.</creator><creator>Frunzio, L.</creator><creator>Devoret, M. H.</creator><creator>Jiang, Liang</creator><creator>Schoelkopf, R. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201809</creationdate><title>Deterministic teleportation of a quantum gate between two logical qubits</title><author>Chou, Kevin S. ; Blumoff, Jacob Z. ; Wang, Christopher S. ; Reinhold, Philip C. ; Axline, Christopher J. ; Gao, Yvonne Y. ; Frunzio, L. ; Devoret, M. H. ; Jiang, Liang ; Schoelkopf, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-c19bbdd88b64d69e2892020c50e4974b4a8ccde8b3ce663e093217bf1f4be7db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/766/483/1139</topic><topic>639/766/483/2802</topic><topic>639/766/483/481</topic><topic>Adaptive control</topic><topic>Architecture</topic><topic>Atoms</topic><topic>Coding</topic><topic>Communication</topic><topic>Complex systems</topic><topic>Complexity</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Computers</topic><topic>Data processing services</topic><topic>Error correction</topic><topic>Fault tolerance</topic><topic>Humanities and Social Sciences</topic><topic>Information storage</topic><topic>Letter</topic><topic>Microprocessors</topic><topic>Modularity</topic><topic>multidisciplinary</topic><topic>Protocol (computers)</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum mechanics</topic><topic>Quantum phenomena</topic><topic>Quantum teleportation</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Kevin S.</creatorcontrib><creatorcontrib>Blumoff, Jacob Z.</creatorcontrib><creatorcontrib>Wang, Christopher S.</creatorcontrib><creatorcontrib>Reinhold, Philip C.</creatorcontrib><creatorcontrib>Axline, Christopher J.</creatorcontrib><creatorcontrib>Gao, Yvonne Y.</creatorcontrib><creatorcontrib>Frunzio, L.</creatorcontrib><creatorcontrib>Devoret, M. H.</creatorcontrib><creatorcontrib>Jiang, Liang</creatorcontrib><creatorcontrib>Schoelkopf, R. J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Kevin S.</au><au>Blumoff, Jacob Z.</au><au>Wang, Christopher S.</au><au>Reinhold, Philip C.</au><au>Axline, Christopher J.</au><au>Gao, Yvonne Y.</au><au>Frunzio, L.</au><au>Devoret, M. H.</au><au>Jiang, Liang</au><au>Schoelkopf, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deterministic teleportation of a quantum gate between two logical qubits</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-09</date><risdate>2018</risdate><volume>561</volume><issue>7723</issue><spage>368</spage><epage>373</epage><pages>368-373</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>A quantum computer has the potential to efficiently solve problems that are intractable for classical computers. However, constructing a large-scale quantum processor is challenging because of the errors and noise that are inherent in real-world quantum systems. One approach to addressing this challenge is to utilize modularity—a strategy used frequently in nature and engineering to build complex systems robustly. Such an approach manages complexity and uncertainty by assembling small, specialized components into a larger architecture. These considerations have motivated the development of a quantum modular architecture, in which separate quantum systems are connected into a quantum network via communication channels
1
,
2
. In this architecture, an essential tool for universal quantum computation is the teleportation of an entangling quantum gate
3
–
5
, but such teleportation has hitherto not been realized as a deterministic operation. Here we experimentally demonstrate the teleportation of a controlled-NOT (CNOT) gate, which we make deterministic by using real-time adaptive control. In addition, we take a crucial step towards implementing robust, error-correctable modules by enacting the gate between two logical qubits, encoding quantum information redundantly in the states of superconducting cavities
6
. By using such an error-correctable encoding, our teleported gate achieves a process fidelity of 79 per cent. Teleported gates have implications for fault-tolerant quantum computation
3
, and when realized within a network can have broad applications in quantum communication, metrology and simulations
1
,
2
,
7
. Our results illustrate a compelling approach for implementing multi-qubit operations on logical qubits and, if integrated with quantum error-correction protocols, indicate a promising path towards fault-tolerant quantum computation using a modular architecture.
A teleported controlled-NOT gate is realized experimentally between two logical qubits implemented as superconducting cavity quantum memories, thus demonstrating an important tool for universal computation in a quantum modular architecture.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30185908</pmid><doi>10.1038/s41586-018-0470-y</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-09, Vol.561 (7723), p.368-373 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2100331532 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/766/483/1139 639/766/483/2802 639/766/483/481 Adaptive control Architecture Atoms Coding Communication Complex systems Complexity Computation Computer simulation Computers Data processing services Error correction Fault tolerance Humanities and Social Sciences Information storage Letter Microprocessors Modularity multidisciplinary Protocol (computers) Quantum computers Quantum computing Quantum mechanics Quantum phenomena Quantum teleportation Quantum theory Qubits (quantum computing) Science Science (multidisciplinary) Superconductors |
title | Deterministic teleportation of a quantum gate between two logical qubits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T13%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deterministic%20teleportation%20of%20a%20quantum%20gate%20between%20two%20logical%20qubits&rft.jtitle=Nature%20(London)&rft.au=Chou,%20Kevin%20S.&rft.date=2018-09&rft.volume=561&rft.issue=7723&rft.spage=368&rft.epage=373&rft.pages=368-373&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-018-0470-y&rft_dat=%3Cgale_proqu%3EA572956950%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117328842&rft_id=info:pmid/30185908&rft_galeid=A572956950&rfr_iscdi=true |