Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing

Source apportionment studies of particulate matter (PM) link chemical composition to emission sources, while health risk analyses link health outcomes and chemical composition. There are limited studies to link emission sources and health risks from ambient measurements. We show such an attempt for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2018-10, Vol.52 (19), p.10967-10974
Hauptverfasser: Huang, Ru-Jin, Cheng, Rui, Jing, Miao, Yang, Lu, Li, Yongjie, Chen, Qi, Chen, Yang, Yan, Jin, Lin, Chunshui, Wu, Yunfei, Zhang, Renjian, El Haddad, Imad, Prevot, Andre S. H, O’Dowd, Colin D, Cao, Junji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10974
container_issue 19
container_start_page 10967
container_title Environmental science & technology
container_volume 52
creator Huang, Ru-Jin
Cheng, Rui
Jing, Miao
Yang, Lu
Li, Yongjie
Chen, Qi
Chen, Yang
Yan, Jin
Lin, Chunshui
Wu, Yunfei
Zhang, Renjian
El Haddad, Imad
Prevot, Andre S. H
O’Dowd, Colin D
Cao, Junji
description Source apportionment studies of particulate matter (PM) link chemical composition to emission sources, while health risk analyses link health outcomes and chemical composition. There are limited studies to link emission sources and health risks from ambient measurements. We show such an attempt for particulate trace elements. Elements in PM2.5 were measured in wintertime Beijing, and the total concentrations of 14 trace elements were 1.3–7.3 times higher during severe pollution days than during low pollution days. Fe, Zn, and Pb were the most abundant elements independent of the PM pollution levels. Chemical fractionation shows that Pb, Mn, Cd, As, Sr, Co, V, Cu, and Ni were present mainly in the bioavailable fraction. Positive matrix factorization was used to resolve the sources of particulate trace elements into dust, oil combustion, coal combustion, and traffic-related emissions. Traffic-related emission contributed 65% of total mass of the measured elements during low pollution days. However, coal combustion dominated (58%) during severe pollution days. By combining element-specific health risk analyses and source apportionment results, we conclude that traffic-related emission dominates the health risks by particulate trace elements during low pollution days, while coal combustion becomes equally or even more important during moderate and severe pollution days.
doi_str_mv 10.1021/acs.est.8b02091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2100330058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2100330058</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-7144ab09a7181202889249b206af3c6ee012aaf3b24c576e32d561647f8e705e3</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS1ERZeWMzdkiQsSynZs54_DbVkttFIRqC2CWzTxTsBL4mxt59DvwQfG0S49IHGxLev33ozeY-ylgKUAKS7QhCWFuNQtSKjFE7YQhYSs0IV4yhYAQmW1Kr-fsuch7ABAKtDP2KkCoQuQcsF-346TN5Td7snYzhp-SdjHn_zGhl985bB_CDbw0fEv6KM1U4-R-J1HQ3zT00Auhnd8PWKfjqGdQrSJRbedmW722ww2hPlzFfgn3I0-gS56205x9IFbx79ZFymZD8Tfk91Z9-OcnXTYB3pxvM_Y1w-bu_Vldv3549V6dZ1hLquYVSLPsYUaK6GFBKl1LfO6lVBip0xJBEJierYyN0VVkpLbohRlXnWaKihInbE3B9-9H--nlGOTljXU9-honEIjBYBSAIVO6Ot_0F0KLuUzU7Ku02yRJ-riQBk_huCpa_beDugfGgHNXFiTCmtm9bGwpHh19J3agbaP_N-GEvD2AMzKx5n_s_sD0j6hAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2129988914</pqid></control><display><type>article</type><title>Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing</title><source>ACS Publications</source><creator>Huang, Ru-Jin ; Cheng, Rui ; Jing, Miao ; Yang, Lu ; Li, Yongjie ; Chen, Qi ; Chen, Yang ; Yan, Jin ; Lin, Chunshui ; Wu, Yunfei ; Zhang, Renjian ; El Haddad, Imad ; Prevot, Andre S. H ; O’Dowd, Colin D ; Cao, Junji</creator><creatorcontrib>Huang, Ru-Jin ; Cheng, Rui ; Jing, Miao ; Yang, Lu ; Li, Yongjie ; Chen, Qi ; Chen, Yang ; Yan, Jin ; Lin, Chunshui ; Wu, Yunfei ; Zhang, Renjian ; El Haddad, Imad ; Prevot, Andre S. H ; O’Dowd, Colin D ; Cao, Junji</creatorcontrib><description>Source apportionment studies of particulate matter (PM) link chemical composition to emission sources, while health risk analyses link health outcomes and chemical composition. There are limited studies to link emission sources and health risks from ambient measurements. We show such an attempt for particulate trace elements. Elements in PM2.5 were measured in wintertime Beijing, and the total concentrations of 14 trace elements were 1.3–7.3 times higher during severe pollution days than during low pollution days. Fe, Zn, and Pb were the most abundant elements independent of the PM pollution levels. Chemical fractionation shows that Pb, Mn, Cd, As, Sr, Co, V, Cu, and Ni were present mainly in the bioavailable fraction. Positive matrix factorization was used to resolve the sources of particulate trace elements into dust, oil combustion, coal combustion, and traffic-related emissions. Traffic-related emission contributed 65% of total mass of the measured elements during low pollution days. However, coal combustion dominated (58%) during severe pollution days. By combining element-specific health risk analyses and source apportionment results, we conclude that traffic-related emission dominates the health risks by particulate trace elements during low pollution days, while coal combustion becomes equally or even more important during moderate and severe pollution days.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.8b02091</identifier><identifier>PMID: 30185022</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Air pollution ; Bioavailability ; Cadmium ; Chemical composition ; Chemical fractionation ; Chemical pollution ; Coal ; Combustion ; Copper ; Emission analysis ; Emission measurements ; Emissions ; Fractionation ; Health risk assessment ; Health risks ; Lead ; Manganese ; Nickel ; Organic chemistry ; Particulate emissions ; Particulate matter ; Particulates ; Pollution ; Pollution levels ; Pollution sources ; Risk analysis ; Trace elements ; Traffic ; Vehicle emissions ; Winter ; Zinc</subject><ispartof>Environmental science &amp; technology, 2018-10, Vol.52 (19), p.10967-10974</ispartof><rights>Copyright American Chemical Society Oct 2, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-7144ab09a7181202889249b206af3c6ee012aaf3b24c576e32d561647f8e705e3</citedby><cites>FETCH-LOGICAL-a427t-7144ab09a7181202889249b206af3c6ee012aaf3b24c576e32d561647f8e705e3</cites><orcidid>0000-0003-3175-6778 ; 0000-0002-2461-7238 ; 0000-0002-4907-9616 ; 0000-0002-9243-8194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.8b02091$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.8b02091$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30185022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Ru-Jin</creatorcontrib><creatorcontrib>Cheng, Rui</creatorcontrib><creatorcontrib>Jing, Miao</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Li, Yongjie</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><creatorcontrib>Lin, Chunshui</creatorcontrib><creatorcontrib>Wu, Yunfei</creatorcontrib><creatorcontrib>Zhang, Renjian</creatorcontrib><creatorcontrib>El Haddad, Imad</creatorcontrib><creatorcontrib>Prevot, Andre S. H</creatorcontrib><creatorcontrib>O’Dowd, Colin D</creatorcontrib><creatorcontrib>Cao, Junji</creatorcontrib><title>Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Source apportionment studies of particulate matter (PM) link chemical composition to emission sources, while health risk analyses link health outcomes and chemical composition. There are limited studies to link emission sources and health risks from ambient measurements. We show such an attempt for particulate trace elements. Elements in PM2.5 were measured in wintertime Beijing, and the total concentrations of 14 trace elements were 1.3–7.3 times higher during severe pollution days than during low pollution days. Fe, Zn, and Pb were the most abundant elements independent of the PM pollution levels. Chemical fractionation shows that Pb, Mn, Cd, As, Sr, Co, V, Cu, and Ni were present mainly in the bioavailable fraction. Positive matrix factorization was used to resolve the sources of particulate trace elements into dust, oil combustion, coal combustion, and traffic-related emissions. Traffic-related emission contributed 65% of total mass of the measured elements during low pollution days. However, coal combustion dominated (58%) during severe pollution days. By combining element-specific health risk analyses and source apportionment results, we conclude that traffic-related emission dominates the health risks by particulate trace elements during low pollution days, while coal combustion becomes equally or even more important during moderate and severe pollution days.</description><subject>Air pollution</subject><subject>Bioavailability</subject><subject>Cadmium</subject><subject>Chemical composition</subject><subject>Chemical fractionation</subject><subject>Chemical pollution</subject><subject>Coal</subject><subject>Combustion</subject><subject>Copper</subject><subject>Emission analysis</subject><subject>Emission measurements</subject><subject>Emissions</subject><subject>Fractionation</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Lead</subject><subject>Manganese</subject><subject>Nickel</subject><subject>Organic chemistry</subject><subject>Particulate emissions</subject><subject>Particulate matter</subject><subject>Particulates</subject><subject>Pollution</subject><subject>Pollution levels</subject><subject>Pollution sources</subject><subject>Risk analysis</subject><subject>Trace elements</subject><subject>Traffic</subject><subject>Vehicle emissions</subject><subject>Winter</subject><subject>Zinc</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kU9v1DAQxS1ERZeWMzdkiQsSynZs54_DbVkttFIRqC2CWzTxTsBL4mxt59DvwQfG0S49IHGxLev33ozeY-ylgKUAKS7QhCWFuNQtSKjFE7YQhYSs0IV4yhYAQmW1Kr-fsuch7ABAKtDP2KkCoQuQcsF-346TN5Td7snYzhp-SdjHn_zGhl985bB_CDbw0fEv6KM1U4-R-J1HQ3zT00Auhnd8PWKfjqGdQrSJRbedmW722ww2hPlzFfgn3I0-gS56205x9IFbx79ZFymZD8Tfk91Z9-OcnXTYB3pxvM_Y1w-bu_Vldv3549V6dZ1hLquYVSLPsYUaK6GFBKl1LfO6lVBip0xJBEJierYyN0VVkpLbohRlXnWaKihInbE3B9-9H--nlGOTljXU9-honEIjBYBSAIVO6Ot_0F0KLuUzU7Ku02yRJ-riQBk_huCpa_beDugfGgHNXFiTCmtm9bGwpHh19J3agbaP_N-GEvD2AMzKx5n_s_sD0j6hAw</recordid><startdate>20181002</startdate><enddate>20181002</enddate><creator>Huang, Ru-Jin</creator><creator>Cheng, Rui</creator><creator>Jing, Miao</creator><creator>Yang, Lu</creator><creator>Li, Yongjie</creator><creator>Chen, Qi</creator><creator>Chen, Yang</creator><creator>Yan, Jin</creator><creator>Lin, Chunshui</creator><creator>Wu, Yunfei</creator><creator>Zhang, Renjian</creator><creator>El Haddad, Imad</creator><creator>Prevot, Andre S. H</creator><creator>O’Dowd, Colin D</creator><creator>Cao, Junji</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3175-6778</orcidid><orcidid>https://orcid.org/0000-0002-2461-7238</orcidid><orcidid>https://orcid.org/0000-0002-4907-9616</orcidid><orcidid>https://orcid.org/0000-0002-9243-8194</orcidid></search><sort><creationdate>20181002</creationdate><title>Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing</title><author>Huang, Ru-Jin ; Cheng, Rui ; Jing, Miao ; Yang, Lu ; Li, Yongjie ; Chen, Qi ; Chen, Yang ; Yan, Jin ; Lin, Chunshui ; Wu, Yunfei ; Zhang, Renjian ; El Haddad, Imad ; Prevot, Andre S. H ; O’Dowd, Colin D ; Cao, Junji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-7144ab09a7181202889249b206af3c6ee012aaf3b24c576e32d561647f8e705e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Air pollution</topic><topic>Bioavailability</topic><topic>Cadmium</topic><topic>Chemical composition</topic><topic>Chemical fractionation</topic><topic>Chemical pollution</topic><topic>Coal</topic><topic>Combustion</topic><topic>Copper</topic><topic>Emission analysis</topic><topic>Emission measurements</topic><topic>Emissions</topic><topic>Fractionation</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Lead</topic><topic>Manganese</topic><topic>Nickel</topic><topic>Organic chemistry</topic><topic>Particulate emissions</topic><topic>Particulate matter</topic><topic>Particulates</topic><topic>Pollution</topic><topic>Pollution levels</topic><topic>Pollution sources</topic><topic>Risk analysis</topic><topic>Trace elements</topic><topic>Traffic</topic><topic>Vehicle emissions</topic><topic>Winter</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Ru-Jin</creatorcontrib><creatorcontrib>Cheng, Rui</creatorcontrib><creatorcontrib>Jing, Miao</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Li, Yongjie</creatorcontrib><creatorcontrib>Chen, Qi</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><creatorcontrib>Lin, Chunshui</creatorcontrib><creatorcontrib>Wu, Yunfei</creatorcontrib><creatorcontrib>Zhang, Renjian</creatorcontrib><creatorcontrib>El Haddad, Imad</creatorcontrib><creatorcontrib>Prevot, Andre S. H</creatorcontrib><creatorcontrib>O’Dowd, Colin D</creatorcontrib><creatorcontrib>Cao, Junji</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Ru-Jin</au><au>Cheng, Rui</au><au>Jing, Miao</au><au>Yang, Lu</au><au>Li, Yongjie</au><au>Chen, Qi</au><au>Chen, Yang</au><au>Yan, Jin</au><au>Lin, Chunshui</au><au>Wu, Yunfei</au><au>Zhang, Renjian</au><au>El Haddad, Imad</au><au>Prevot, Andre S. H</au><au>O’Dowd, Colin D</au><au>Cao, Junji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2018-10-02</date><risdate>2018</risdate><volume>52</volume><issue>19</issue><spage>10967</spage><epage>10974</epage><pages>10967-10974</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Source apportionment studies of particulate matter (PM) link chemical composition to emission sources, while health risk analyses link health outcomes and chemical composition. There are limited studies to link emission sources and health risks from ambient measurements. We show such an attempt for particulate trace elements. Elements in PM2.5 were measured in wintertime Beijing, and the total concentrations of 14 trace elements were 1.3–7.3 times higher during severe pollution days than during low pollution days. Fe, Zn, and Pb were the most abundant elements independent of the PM pollution levels. Chemical fractionation shows that Pb, Mn, Cd, As, Sr, Co, V, Cu, and Ni were present mainly in the bioavailable fraction. Positive matrix factorization was used to resolve the sources of particulate trace elements into dust, oil combustion, coal combustion, and traffic-related emissions. Traffic-related emission contributed 65% of total mass of the measured elements during low pollution days. However, coal combustion dominated (58%) during severe pollution days. By combining element-specific health risk analyses and source apportionment results, we conclude that traffic-related emission dominates the health risks by particulate trace elements during low pollution days, while coal combustion becomes equally or even more important during moderate and severe pollution days.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30185022</pmid><doi>10.1021/acs.est.8b02091</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3175-6778</orcidid><orcidid>https://orcid.org/0000-0002-2461-7238</orcidid><orcidid>https://orcid.org/0000-0002-4907-9616</orcidid><orcidid>https://orcid.org/0000-0002-9243-8194</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2018-10, Vol.52 (19), p.10967-10974
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_2100330058
source ACS Publications
subjects Air pollution
Bioavailability
Cadmium
Chemical composition
Chemical fractionation
Chemical pollution
Coal
Combustion
Copper
Emission analysis
Emission measurements
Emissions
Fractionation
Health risk assessment
Health risks
Lead
Manganese
Nickel
Organic chemistry
Particulate emissions
Particulate matter
Particulates
Pollution
Pollution levels
Pollution sources
Risk analysis
Trace elements
Traffic
Vehicle emissions
Winter
Zinc
title Source-Specific Health Risk Analysis on Particulate Trace Elements: Coal Combustion and Traffic Emission As Major Contributors in Wintertime Beijing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A03%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Source-Specific%20Health%20Risk%20Analysis%20on%20Particulate%20Trace%20Elements:%20Coal%20Combustion%20and%20Traffic%20Emission%20As%20Major%20Contributors%20in%20Wintertime%20Beijing&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Huang,%20Ru-Jin&rft.date=2018-10-02&rft.volume=52&rft.issue=19&rft.spage=10967&rft.epage=10974&rft.pages=10967-10974&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.8b02091&rft_dat=%3Cproquest_cross%3E2100330058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2129988914&rft_id=info:pmid/30185022&rfr_iscdi=true