Membranotropic effects of ω-hydroxypalmitic acid and Ca2+ on rat liver mitochondria and lecithin liposomes. Aggregation and membrane permeabilization
The paper examines membranotropic Ca 2+ -dependent effects of ω-hydroxypalmitic acid (HPA), a product of ω-oxidation of fatty acids, on the isolated rat liver mitochondria and artificial membrane systems (liposomes). It was established that in the presence of Ca 2+ , HPA induced aggregation of liver...
Gespeichert in:
Veröffentlicht in: | Journal of bioenergetics and biomembranes 2018-10, Vol.50 (5), p.391-401 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 401 |
---|---|
container_issue | 5 |
container_start_page | 391 |
container_title | Journal of bioenergetics and biomembranes |
container_volume | 50 |
creator | Dubinin, Mikhail V. Samartsev, Victor N. Stepanova, Anastasia E. Khoroshavina, Ekaterina I. Penkov, Nikita V. Yashin, Valery A. Starinets, Vlada S. Mikheeva, Irina B. Gudkov, Sergey V. Belosludtsev, Konstantin N. |
description | The paper examines membranotropic Ca
2+
-dependent effects of ω-hydroxypalmitic acid (HPA), a product of ω-oxidation of fatty acids, on the isolated rat liver mitochondria and artificial membrane systems (liposomes). It was established that in the presence of Ca
2+
, HPA induced aggregation of liver mitochondria, which was accompanied by the release of cytochrome
c
from the organelles. It was further demonstrated that the addition of Ca
2+
to HPA-containing liposomes induced their aggregation and/or fusion. Ca
2+
also caused the release of the fluorescent dye sulforhodamine B from liposomes, indicating their permeabilization. HPA was shown to induce a high-amplitude swelling of Ca
2+
-loaded mitochondria, to decrease their membrane potential, to induce the release of Ca
2+
from the organelles and to result in the oxidation of the mitochondrial NAD(P)H pool. Those effects of HPA were not blocked by the MPT pore inhibitor CsA, but were suppressed by the mitochondrial calcium uniporter inhibitor ruthenium red. The effects of HPA were also observed when Ca
2+
was replaced with Sr
2+
(but not with Ba
2+
or Mg
2+
). A supposition is made that HPA can induce a Ca
2+
-dependent aggregation of mitochondria, as well as Ca
2+
dependent CsA-insensitive permeabilization of the inner mitochondrial membrane – with the subsequent lysis of the organelles. |
doi_str_mv | 10.1007/s10863-018-9771-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2100326598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099743888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-5b2a4bd1d2d5974b060ee4ff194f9a9512b84e8b6d1e7119f9c3d5705bc449d03</originalsourceid><addsrcrecordid>eNp1kc2KFDEUhYMo2I4-gLuAG0EyJqmkkiyHxp-BGdwouAup5FZ3hqpKmVSL5Rv4Ar6Wr2R6ShAEV3dxvnPu5R6EnjN6yShVrwujum0IZZoYpRhZH6Adk6ohrdbsIdpRJiQRynx-jJ6Uckcp1VTSHfp5C2OX3ZSWnOboMfQ9-KXg1ONfP8hxDTl9W2c3jHGpqvMxYDcFvHf8FU4Tzm7BQ_wKGVcg-WOaQo7uHhnAx-UYp6rPqaQRyiW-OhwyHNwSq_XMjNtywDPkEVwXh_j9Xn2KHvVuKPDsz7xAn96--bh_T24-vLveX90Qz5VZiOy4E11ggQdplOhoSwFE3zMjeuOMZLzTAnTXBgaKMdMb3wSpqOy8ECbQ5gK93HLnnL6coCx2jMXDMNSj0qlYXp_b8FYaXdEX_6B36ZSnep3l1NTtjdZnim2Uz6mUDL2dcxxdXi2j9tyU3ZqytSl7bsqu1cM3T6nsdID8N_n_pt98RJo4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099743888</pqid></control><display><type>article</type><title>Membranotropic effects of ω-hydroxypalmitic acid and Ca2+ on rat liver mitochondria and lecithin liposomes. Aggregation and membrane permeabilization</title><source>Springer Nature - Complete Springer Journals</source><creator>Dubinin, Mikhail V. ; Samartsev, Victor N. ; Stepanova, Anastasia E. ; Khoroshavina, Ekaterina I. ; Penkov, Nikita V. ; Yashin, Valery A. ; Starinets, Vlada S. ; Mikheeva, Irina B. ; Gudkov, Sergey V. ; Belosludtsev, Konstantin N.</creator><creatorcontrib>Dubinin, Mikhail V. ; Samartsev, Victor N. ; Stepanova, Anastasia E. ; Khoroshavina, Ekaterina I. ; Penkov, Nikita V. ; Yashin, Valery A. ; Starinets, Vlada S. ; Mikheeva, Irina B. ; Gudkov, Sergey V. ; Belosludtsev, Konstantin N.</creatorcontrib><description>The paper examines membranotropic Ca
2+
-dependent effects of ω-hydroxypalmitic acid (HPA), a product of ω-oxidation of fatty acids, on the isolated rat liver mitochondria and artificial membrane systems (liposomes). It was established that in the presence of Ca
2+
, HPA induced aggregation of liver mitochondria, which was accompanied by the release of cytochrome
c
from the organelles. It was further demonstrated that the addition of Ca
2+
to HPA-containing liposomes induced their aggregation and/or fusion. Ca
2+
also caused the release of the fluorescent dye sulforhodamine B from liposomes, indicating their permeabilization. HPA was shown to induce a high-amplitude swelling of Ca
2+
-loaded mitochondria, to decrease their membrane potential, to induce the release of Ca
2+
from the organelles and to result in the oxidation of the mitochondrial NAD(P)H pool. Those effects of HPA were not blocked by the MPT pore inhibitor CsA, but were suppressed by the mitochondrial calcium uniporter inhibitor ruthenium red. The effects of HPA were also observed when Ca
2+
was replaced with Sr
2+
(but not with Ba
2+
or Mg
2+
). A supposition is made that HPA can induce a Ca
2+
-dependent aggregation of mitochondria, as well as Ca
2+
dependent CsA-insensitive permeabilization of the inner mitochondrial membrane – with the subsequent lysis of the organelles.</description><identifier>ISSN: 0145-479X</identifier><identifier>EISSN: 1573-6881</identifier><identifier>DOI: 10.1007/s10863-018-9771-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agglomeration ; Animal Anatomy ; Animal Biochemistry ; Biochemistry ; Bioorganic Chemistry ; Calcium (mitochondrial) ; Calcium ions ; Chemistry ; Chemistry and Materials Science ; Cytochrome c ; Cytochromes ; Fatty acids ; Fluorescence ; Fluorescent dyes ; Fluorescent indicators ; Histology ; Inhibitors ; Lecithin ; Liposomes ; Liver ; Lysis ; Magnesium ; Membrane potential ; Membranes ; Mitochondria ; Mitochondrial DNA ; Morphology ; NAD ; Organelles ; Organic Chemistry ; Oxidation ; Ruthenium ; Ruthenium red ; Sulforhodamine</subject><ispartof>Journal of bioenergetics and biomembranes, 2018-10, Vol.50 (5), p.391-401</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Bioenergetics and Biomembranes is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c279t-5b2a4bd1d2d5974b060ee4ff194f9a9512b84e8b6d1e7119f9c3d5705bc449d03</citedby><cites>FETCH-LOGICAL-c279t-5b2a4bd1d2d5974b060ee4ff194f9a9512b84e8b6d1e7119f9c3d5705bc449d03</cites><orcidid>0000-0002-7453-3390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10863-018-9771-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10863-018-9771-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Dubinin, Mikhail V.</creatorcontrib><creatorcontrib>Samartsev, Victor N.</creatorcontrib><creatorcontrib>Stepanova, Anastasia E.</creatorcontrib><creatorcontrib>Khoroshavina, Ekaterina I.</creatorcontrib><creatorcontrib>Penkov, Nikita V.</creatorcontrib><creatorcontrib>Yashin, Valery A.</creatorcontrib><creatorcontrib>Starinets, Vlada S.</creatorcontrib><creatorcontrib>Mikheeva, Irina B.</creatorcontrib><creatorcontrib>Gudkov, Sergey V.</creatorcontrib><creatorcontrib>Belosludtsev, Konstantin N.</creatorcontrib><title>Membranotropic effects of ω-hydroxypalmitic acid and Ca2+ on rat liver mitochondria and lecithin liposomes. Aggregation and membrane permeabilization</title><title>Journal of bioenergetics and biomembranes</title><addtitle>J Bioenerg Biomembr</addtitle><description>The paper examines membranotropic Ca
2+
-dependent effects of ω-hydroxypalmitic acid (HPA), a product of ω-oxidation of fatty acids, on the isolated rat liver mitochondria and artificial membrane systems (liposomes). It was established that in the presence of Ca
2+
, HPA induced aggregation of liver mitochondria, which was accompanied by the release of cytochrome
c
from the organelles. It was further demonstrated that the addition of Ca
2+
to HPA-containing liposomes induced their aggregation and/or fusion. Ca
2+
also caused the release of the fluorescent dye sulforhodamine B from liposomes, indicating their permeabilization. HPA was shown to induce a high-amplitude swelling of Ca
2+
-loaded mitochondria, to decrease their membrane potential, to induce the release of Ca
2+
from the organelles and to result in the oxidation of the mitochondrial NAD(P)H pool. Those effects of HPA were not blocked by the MPT pore inhibitor CsA, but were suppressed by the mitochondrial calcium uniporter inhibitor ruthenium red. The effects of HPA were also observed when Ca
2+
was replaced with Sr
2+
(but not with Ba
2+
or Mg
2+
). A supposition is made that HPA can induce a Ca
2+
-dependent aggregation of mitochondria, as well as Ca
2+
dependent CsA-insensitive permeabilization of the inner mitochondrial membrane – with the subsequent lysis of the organelles.</description><subject>Agglomeration</subject><subject>Animal Anatomy</subject><subject>Animal Biochemistry</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium ions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Cytochrome c</subject><subject>Cytochromes</subject><subject>Fatty acids</subject><subject>Fluorescence</subject><subject>Fluorescent dyes</subject><subject>Fluorescent indicators</subject><subject>Histology</subject><subject>Inhibitors</subject><subject>Lecithin</subject><subject>Liposomes</subject><subject>Liver</subject><subject>Lysis</subject><subject>Magnesium</subject><subject>Membrane potential</subject><subject>Membranes</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Morphology</subject><subject>NAD</subject><subject>Organelles</subject><subject>Organic Chemistry</subject><subject>Oxidation</subject><subject>Ruthenium</subject><subject>Ruthenium red</subject><subject>Sulforhodamine</subject><issn>0145-479X</issn><issn>1573-6881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kc2KFDEUhYMo2I4-gLuAG0EyJqmkkiyHxp-BGdwouAup5FZ3hqpKmVSL5Rv4Ar6Wr2R6ShAEV3dxvnPu5R6EnjN6yShVrwujum0IZZoYpRhZH6Adk6ohrdbsIdpRJiQRynx-jJ6Uckcp1VTSHfp5C2OX3ZSWnOboMfQ9-KXg1ONfP8hxDTl9W2c3jHGpqvMxYDcFvHf8FU4Tzm7BQ_wKGVcg-WOaQo7uHhnAx-UYp6rPqaQRyiW-OhwyHNwSq_XMjNtywDPkEVwXh_j9Xn2KHvVuKPDsz7xAn96--bh_T24-vLveX90Qz5VZiOy4E11ggQdplOhoSwFE3zMjeuOMZLzTAnTXBgaKMdMb3wSpqOy8ECbQ5gK93HLnnL6coCx2jMXDMNSj0qlYXp_b8FYaXdEX_6B36ZSnep3l1NTtjdZnim2Uz6mUDL2dcxxdXi2j9tyU3ZqytSl7bsqu1cM3T6nsdID8N_n_pt98RJo4</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Dubinin, Mikhail V.</creator><creator>Samartsev, Victor N.</creator><creator>Stepanova, Anastasia E.</creator><creator>Khoroshavina, Ekaterina I.</creator><creator>Penkov, Nikita V.</creator><creator>Yashin, Valery A.</creator><creator>Starinets, Vlada S.</creator><creator>Mikheeva, Irina B.</creator><creator>Gudkov, Sergey V.</creator><creator>Belosludtsev, Konstantin N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7453-3390</orcidid></search><sort><creationdate>20181001</creationdate><title>Membranotropic effects of ω-hydroxypalmitic acid and Ca2+ on rat liver mitochondria and lecithin liposomes. Aggregation and membrane permeabilization</title><author>Dubinin, Mikhail V. ; Samartsev, Victor N. ; Stepanova, Anastasia E. ; Khoroshavina, Ekaterina I. ; Penkov, Nikita V. ; Yashin, Valery A. ; Starinets, Vlada S. ; Mikheeva, Irina B. ; Gudkov, Sergey V. ; Belosludtsev, Konstantin N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-5b2a4bd1d2d5974b060ee4ff194f9a9512b84e8b6d1e7119f9c3d5705bc449d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agglomeration</topic><topic>Animal Anatomy</topic><topic>Animal Biochemistry</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium ions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Cytochrome c</topic><topic>Cytochromes</topic><topic>Fatty acids</topic><topic>Fluorescence</topic><topic>Fluorescent dyes</topic><topic>Fluorescent indicators</topic><topic>Histology</topic><topic>Inhibitors</topic><topic>Lecithin</topic><topic>Liposomes</topic><topic>Liver</topic><topic>Lysis</topic><topic>Magnesium</topic><topic>Membrane potential</topic><topic>Membranes</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Morphology</topic><topic>NAD</topic><topic>Organelles</topic><topic>Organic Chemistry</topic><topic>Oxidation</topic><topic>Ruthenium</topic><topic>Ruthenium red</topic><topic>Sulforhodamine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubinin, Mikhail V.</creatorcontrib><creatorcontrib>Samartsev, Victor N.</creatorcontrib><creatorcontrib>Stepanova, Anastasia E.</creatorcontrib><creatorcontrib>Khoroshavina, Ekaterina I.</creatorcontrib><creatorcontrib>Penkov, Nikita V.</creatorcontrib><creatorcontrib>Yashin, Valery A.</creatorcontrib><creatorcontrib>Starinets, Vlada S.</creatorcontrib><creatorcontrib>Mikheeva, Irina B.</creatorcontrib><creatorcontrib>Gudkov, Sergey V.</creatorcontrib><creatorcontrib>Belosludtsev, Konstantin N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of bioenergetics and biomembranes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubinin, Mikhail V.</au><au>Samartsev, Victor N.</au><au>Stepanova, Anastasia E.</au><au>Khoroshavina, Ekaterina I.</au><au>Penkov, Nikita V.</au><au>Yashin, Valery A.</au><au>Starinets, Vlada S.</au><au>Mikheeva, Irina B.</au><au>Gudkov, Sergey V.</au><au>Belosludtsev, Konstantin N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membranotropic effects of ω-hydroxypalmitic acid and Ca2+ on rat liver mitochondria and lecithin liposomes. Aggregation and membrane permeabilization</atitle><jtitle>Journal of bioenergetics and biomembranes</jtitle><stitle>J Bioenerg Biomembr</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>50</volume><issue>5</issue><spage>391</spage><epage>401</epage><pages>391-401</pages><issn>0145-479X</issn><eissn>1573-6881</eissn><abstract>The paper examines membranotropic Ca
2+
-dependent effects of ω-hydroxypalmitic acid (HPA), a product of ω-oxidation of fatty acids, on the isolated rat liver mitochondria and artificial membrane systems (liposomes). It was established that in the presence of Ca
2+
, HPA induced aggregation of liver mitochondria, which was accompanied by the release of cytochrome
c
from the organelles. It was further demonstrated that the addition of Ca
2+
to HPA-containing liposomes induced their aggregation and/or fusion. Ca
2+
also caused the release of the fluorescent dye sulforhodamine B from liposomes, indicating their permeabilization. HPA was shown to induce a high-amplitude swelling of Ca
2+
-loaded mitochondria, to decrease their membrane potential, to induce the release of Ca
2+
from the organelles and to result in the oxidation of the mitochondrial NAD(P)H pool. Those effects of HPA were not blocked by the MPT pore inhibitor CsA, but were suppressed by the mitochondrial calcium uniporter inhibitor ruthenium red. The effects of HPA were also observed when Ca
2+
was replaced with Sr
2+
(but not with Ba
2+
or Mg
2+
). A supposition is made that HPA can induce a Ca
2+
-dependent aggregation of mitochondria, as well as Ca
2+
dependent CsA-insensitive permeabilization of the inner mitochondrial membrane – with the subsequent lysis of the organelles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10863-018-9771-y</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7453-3390</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0145-479X |
ispartof | Journal of bioenergetics and biomembranes, 2018-10, Vol.50 (5), p.391-401 |
issn | 0145-479X 1573-6881 |
language | eng |
recordid | cdi_proquest_miscellaneous_2100326598 |
source | Springer Nature - Complete Springer Journals |
subjects | Agglomeration Animal Anatomy Animal Biochemistry Biochemistry Bioorganic Chemistry Calcium (mitochondrial) Calcium ions Chemistry Chemistry and Materials Science Cytochrome c Cytochromes Fatty acids Fluorescence Fluorescent dyes Fluorescent indicators Histology Inhibitors Lecithin Liposomes Liver Lysis Magnesium Membrane potential Membranes Mitochondria Mitochondrial DNA Morphology NAD Organelles Organic Chemistry Oxidation Ruthenium Ruthenium red Sulforhodamine |
title | Membranotropic effects of ω-hydroxypalmitic acid and Ca2+ on rat liver mitochondria and lecithin liposomes. Aggregation and membrane permeabilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membranotropic%20effects%20of%20%CF%89-hydroxypalmitic%20acid%20and%20Ca2+%20on%20rat%20liver%20mitochondria%20and%20lecithin%20liposomes.%20Aggregation%20and%20membrane%20permeabilization&rft.jtitle=Journal%20of%20bioenergetics%20and%20biomembranes&rft.au=Dubinin,%20Mikhail%20V.&rft.date=2018-10-01&rft.volume=50&rft.issue=5&rft.spage=391&rft.epage=401&rft.pages=391-401&rft.issn=0145-479X&rft.eissn=1573-6881&rft_id=info:doi/10.1007/s10863-018-9771-y&rft_dat=%3Cproquest_cross%3E2099743888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099743888&rft_id=info:pmid/&rfr_iscdi=true |