A phenomenological model of the time course of maximal voluntary isometric contraction force for optimization of complex loading schemes

Purpose The time course of maximal voluntary isometric contraction (MVIC) force is of particular interest whenever force capacities are a limiting factor, e.g., during heavy manual work or resistance training (RT) sessions. The objective of this work was to develop a mathematical model of this time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied physiology 2018-12, Vol.118 (12), p.2587-2605
Hauptverfasser: Herold, Johannes L., Kirches, Christian, Schlöder, Johannes P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2605
container_issue 12
container_start_page 2587
container_title European journal of applied physiology
container_volume 118
creator Herold, Johannes L.
Kirches, Christian
Schlöder, Johannes P.
description Purpose The time course of maximal voluntary isometric contraction (MVIC) force is of particular interest whenever force capacities are a limiting factor, e.g., during heavy manual work or resistance training (RT) sessions. The objective of this work was to develop a mathematical model of this time course that is suitable for optimization of complex loading schemes. Materials and methods We compiled a literature overview of existing models and justified the need for a new model. We then constructed a phenomenological ordinary differential equation model to describe the time course of MVIC force during voluntary isometric contractions and at rest. We validated the model with a comprehensive set of published data from the elbow flexors. For this, we estimated parameters from a subset of the available data and used those estimates to predict the remaining data. Afterwards, we illustrated the benefits of our model using the calibrated model to (1) analyze fatigue and recovery patterns observed in the literature (2) compute a work–rest schedule that minimizes fatigue (3) determine an isometric RT session that maximizes training volume. Results We demonstrated that our model (1) is able to describe MVIC force under complex loading schemes (2) can be used to analyze fatigue and recovery patterns observed in the literature (3) can be used to optimize complex loading schemes. Conclusions We developed a mathematical model of the time course of MVIC force that can be efficiently employed to optimize complex loading schemes. This enables an optimal use of MVIC force capacities.
doi_str_mv 10.1007/s00421-018-3983-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2099893936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099247598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-d0c79531bc39cb372592a3cacc2f40a8c827a26d5c81ff3521494875dc2423253</originalsourceid><addsrcrecordid>eNp1kctqHDEQRUVwiJ1JPiCbIPAmm0706Ie0NMZOAoZskrXQVKtnZKRWW-o29nyBPzs1HscBgxeSitK5V-IWIZ84-8oZ674VxmrBK8ZVJbWS1e4NOeG11FUrRXf0XHN9TN6Xcs0YU4Krd-RYogSr9oQ8nNFp68YUcYW08WADjal3gaaBzltHZx8dhbTk4vataO98ROY2hWWcbb6nvqB4zh6QGudsYfZppEPK4PY7TRNa-J19bKMDpDgFd0dDsr0fN7TA1kVXPpC3gw3FfXw6V-TP5cXv8x_V1a_vP8_PriqoWzVXPYNON5KvQWpYy040WlgJFkAMNbMKlOisaPsGFB8G2Qhe61p1TQ-iFlI0ckW-HHynnG4WV2YTfQEXgh1dWooRTGulpZYtoqcv0GvMYcTfPVKi7hpMfUX4gYKcSsluMFPGiPK94czsx2QOYzKYudmPyexQ8_nJeVlH1z8r_s0FAXEACl6NG5f_P_2661-v95_p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099247598</pqid></control><display><type>article</type><title>A phenomenological model of the time course of maximal voluntary isometric contraction force for optimization of complex loading schemes</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Herold, Johannes L. ; Kirches, Christian ; Schlöder, Johannes P.</creator><creatorcontrib>Herold, Johannes L. ; Kirches, Christian ; Schlöder, Johannes P.</creatorcontrib><description>Purpose The time course of maximal voluntary isometric contraction (MVIC) force is of particular interest whenever force capacities are a limiting factor, e.g., during heavy manual work or resistance training (RT) sessions. The objective of this work was to develop a mathematical model of this time course that is suitable for optimization of complex loading schemes. Materials and methods We compiled a literature overview of existing models and justified the need for a new model. We then constructed a phenomenological ordinary differential equation model to describe the time course of MVIC force during voluntary isometric contractions and at rest. We validated the model with a comprehensive set of published data from the elbow flexors. For this, we estimated parameters from a subset of the available data and used those estimates to predict the remaining data. Afterwards, we illustrated the benefits of our model using the calibrated model to (1) analyze fatigue and recovery patterns observed in the literature (2) compute a work–rest schedule that minimizes fatigue (3) determine an isometric RT session that maximizes training volume. Results We demonstrated that our model (1) is able to describe MVIC force under complex loading schemes (2) can be used to analyze fatigue and recovery patterns observed in the literature (3) can be used to optimize complex loading schemes. Conclusions We developed a mathematical model of the time course of MVIC force that can be efficiently employed to optimize complex loading schemes. This enables an optimal use of MVIC force capacities.</description><identifier>ISSN: 1439-6319</identifier><identifier>EISSN: 1439-6327</identifier><identifier>DOI: 10.1007/s00421-018-3983-z</identifier><identifier>PMID: 30182186</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Contraction ; Elbow ; Elbow - physiology ; Human Physiology ; Humans ; Isometric ; Isometric Contraction ; Mathematical models ; Models, Neurological ; Muscle contraction ; Muscle Fatigue ; Muscle, Skeletal - physiology ; Occupational Medicine/Industrial Medicine ; Original Article ; Physical training ; Qualitative research ; Reaction Time ; Resistance Training - methods ; Sports Medicine ; Strength training</subject><ispartof>European journal of applied physiology, 2018-12, Vol.118 (12), p.2587-2605</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>European Journal of Applied Physiology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-d0c79531bc39cb372592a3cacc2f40a8c827a26d5c81ff3521494875dc2423253</citedby><cites>FETCH-LOGICAL-c468t-d0c79531bc39cb372592a3cacc2f40a8c827a26d5c81ff3521494875dc2423253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00421-018-3983-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00421-018-3983-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30182186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herold, Johannes L.</creatorcontrib><creatorcontrib>Kirches, Christian</creatorcontrib><creatorcontrib>Schlöder, Johannes P.</creatorcontrib><title>A phenomenological model of the time course of maximal voluntary isometric contraction force for optimization of complex loading schemes</title><title>European journal of applied physiology</title><addtitle>Eur J Appl Physiol</addtitle><addtitle>Eur J Appl Physiol</addtitle><description>Purpose The time course of maximal voluntary isometric contraction (MVIC) force is of particular interest whenever force capacities are a limiting factor, e.g., during heavy manual work or resistance training (RT) sessions. The objective of this work was to develop a mathematical model of this time course that is suitable for optimization of complex loading schemes. Materials and methods We compiled a literature overview of existing models and justified the need for a new model. We then constructed a phenomenological ordinary differential equation model to describe the time course of MVIC force during voluntary isometric contractions and at rest. We validated the model with a comprehensive set of published data from the elbow flexors. For this, we estimated parameters from a subset of the available data and used those estimates to predict the remaining data. Afterwards, we illustrated the benefits of our model using the calibrated model to (1) analyze fatigue and recovery patterns observed in the literature (2) compute a work–rest schedule that minimizes fatigue (3) determine an isometric RT session that maximizes training volume. Results We demonstrated that our model (1) is able to describe MVIC force under complex loading schemes (2) can be used to analyze fatigue and recovery patterns observed in the literature (3) can be used to optimize complex loading schemes. Conclusions We developed a mathematical model of the time course of MVIC force that can be efficiently employed to optimize complex loading schemes. This enables an optimal use of MVIC force capacities.</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Contraction</subject><subject>Elbow</subject><subject>Elbow - physiology</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Isometric</subject><subject>Isometric Contraction</subject><subject>Mathematical models</subject><subject>Models, Neurological</subject><subject>Muscle contraction</subject><subject>Muscle Fatigue</subject><subject>Muscle, Skeletal - physiology</subject><subject>Occupational Medicine/Industrial Medicine</subject><subject>Original Article</subject><subject>Physical training</subject><subject>Qualitative research</subject><subject>Reaction Time</subject><subject>Resistance Training - methods</subject><subject>Sports Medicine</subject><subject>Strength training</subject><issn>1439-6319</issn><issn>1439-6327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kctqHDEQRUVwiJ1JPiCbIPAmm0706Ie0NMZOAoZskrXQVKtnZKRWW-o29nyBPzs1HscBgxeSitK5V-IWIZ84-8oZ674VxmrBK8ZVJbWS1e4NOeG11FUrRXf0XHN9TN6Xcs0YU4Krd-RYogSr9oQ8nNFp68YUcYW08WADjal3gaaBzltHZx8dhbTk4vataO98ROY2hWWcbb6nvqB4zh6QGudsYfZppEPK4PY7TRNa-J19bKMDpDgFd0dDsr0fN7TA1kVXPpC3gw3FfXw6V-TP5cXv8x_V1a_vP8_PriqoWzVXPYNON5KvQWpYy040WlgJFkAMNbMKlOisaPsGFB8G2Qhe61p1TQ-iFlI0ckW-HHynnG4WV2YTfQEXgh1dWooRTGulpZYtoqcv0GvMYcTfPVKi7hpMfUX4gYKcSsluMFPGiPK94czsx2QOYzKYudmPyexQ8_nJeVlH1z8r_s0FAXEACl6NG5f_P_2661-v95_p</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Herold, Johannes L.</creator><creator>Kirches, Christian</creator><creator>Schlöder, Johannes P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20181201</creationdate><title>A phenomenological model of the time course of maximal voluntary isometric contraction force for optimization of complex loading schemes</title><author>Herold, Johannes L. ; Kirches, Christian ; Schlöder, Johannes P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-d0c79531bc39cb372592a3cacc2f40a8c827a26d5c81ff3521494875dc2423253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Contraction</topic><topic>Elbow</topic><topic>Elbow - physiology</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Isometric</topic><topic>Isometric Contraction</topic><topic>Mathematical models</topic><topic>Models, Neurological</topic><topic>Muscle contraction</topic><topic>Muscle Fatigue</topic><topic>Muscle, Skeletal - physiology</topic><topic>Occupational Medicine/Industrial Medicine</topic><topic>Original Article</topic><topic>Physical training</topic><topic>Qualitative research</topic><topic>Reaction Time</topic><topic>Resistance Training - methods</topic><topic>Sports Medicine</topic><topic>Strength training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herold, Johannes L.</creatorcontrib><creatorcontrib>Kirches, Christian</creatorcontrib><creatorcontrib>Schlöder, Johannes P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of applied physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herold, Johannes L.</au><au>Kirches, Christian</au><au>Schlöder, Johannes P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phenomenological model of the time course of maximal voluntary isometric contraction force for optimization of complex loading schemes</atitle><jtitle>European journal of applied physiology</jtitle><stitle>Eur J Appl Physiol</stitle><addtitle>Eur J Appl Physiol</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>118</volume><issue>12</issue><spage>2587</spage><epage>2605</epage><pages>2587-2605</pages><issn>1439-6319</issn><eissn>1439-6327</eissn><abstract>Purpose The time course of maximal voluntary isometric contraction (MVIC) force is of particular interest whenever force capacities are a limiting factor, e.g., during heavy manual work or resistance training (RT) sessions. The objective of this work was to develop a mathematical model of this time course that is suitable for optimization of complex loading schemes. Materials and methods We compiled a literature overview of existing models and justified the need for a new model. We then constructed a phenomenological ordinary differential equation model to describe the time course of MVIC force during voluntary isometric contractions and at rest. We validated the model with a comprehensive set of published data from the elbow flexors. For this, we estimated parameters from a subset of the available data and used those estimates to predict the remaining data. Afterwards, we illustrated the benefits of our model using the calibrated model to (1) analyze fatigue and recovery patterns observed in the literature (2) compute a work–rest schedule that minimizes fatigue (3) determine an isometric RT session that maximizes training volume. Results We demonstrated that our model (1) is able to describe MVIC force under complex loading schemes (2) can be used to analyze fatigue and recovery patterns observed in the literature (3) can be used to optimize complex loading schemes. Conclusions We developed a mathematical model of the time course of MVIC force that can be efficiently employed to optimize complex loading schemes. This enables an optimal use of MVIC force capacities.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>30182186</pmid><doi>10.1007/s00421-018-3983-z</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-6319
ispartof European journal of applied physiology, 2018-12, Vol.118 (12), p.2587-2605
issn 1439-6319
1439-6327
language eng
recordid cdi_proquest_miscellaneous_2099893936
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biomedicine
Contraction
Elbow
Elbow - physiology
Human Physiology
Humans
Isometric
Isometric Contraction
Mathematical models
Models, Neurological
Muscle contraction
Muscle Fatigue
Muscle, Skeletal - physiology
Occupational Medicine/Industrial Medicine
Original Article
Physical training
Qualitative research
Reaction Time
Resistance Training - methods
Sports Medicine
Strength training
title A phenomenological model of the time course of maximal voluntary isometric contraction force for optimization of complex loading schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phenomenological%20model%20of%20the%20time%20course%20of%20maximal%20voluntary%20isometric%20contraction%20force%20for%20optimization%20of%20complex%20loading%20schemes&rft.jtitle=European%20journal%20of%20applied%20physiology&rft.au=Herold,%20Johannes%20L.&rft.date=2018-12-01&rft.volume=118&rft.issue=12&rft.spage=2587&rft.epage=2605&rft.pages=2587-2605&rft.issn=1439-6319&rft.eissn=1439-6327&rft_id=info:doi/10.1007/s00421-018-3983-z&rft_dat=%3Cproquest_cross%3E2099247598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099247598&rft_id=info:pmid/30182186&rfr_iscdi=true