Decadal Variability of the Kuroshio Extension: Observations and an Eddy-Resolving Model Hindcast
Low-frequency variability of the Kuroshio Extension (KE) is studied using observations and a multidecadal (1950–2003) hindcast by a high-resolution (0.1°), eddy-resolving, global ocean general circulation model for the Earth Simulator (OFES). In both the OFES hindcast and satellite altimeter observa...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2007-06, Vol.20 (11), p.2357-2377 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2377 |
---|---|
container_issue | 11 |
container_start_page | 2357 |
container_title | Journal of climate |
container_volume | 20 |
creator | Taguchi, Bunmei Xie, Shang-Ping Schneider, Niklas Nonaka, Masami Sasaki, Hideharu Sasai, Yoshikazu |
description | Low-frequency variability of the Kuroshio Extension (KE) is studied using observations and a multidecadal (1950–2003) hindcast by a high-resolution (0.1°), eddy-resolving, global ocean general circulation model for the Earth Simulator (OFES). In both the OFES hindcast and satellite altimeter observations, low-frequency sea surface height (SSH) variability in the North Pacific is high near the KE front. An empirical orthogonal function (EOF) analysis indicates that much of the SSH variability in the western North Pacific east of Japan is explained by two modes with meridional structures tightly trapped along the KE front. The first mode represents a southward shift and to a lesser degree, an acceleration of the KE jet associated with the 1976/77 shift in basin-scale winds. The second mode reflects quasi-decadal variations in the intensity of the KE jet. Both the spatial structure and time series of these modes derived from the hindcast are in close agreement with observations.
A linear Rossby wave model forced by observed wind successfully reproduces the time series of the leading OFES modes but fails to explain why their meridional structure is concentrated on the KE front and inconsistent with the broadscale wind forcing. Further analysis suggests that KE variability may be decomposed into broad-and frontal-scale components in the meridional direction—the former following the linear Rossby wave solution and the latter closely resembling ocean intrinsic modes derived from an OFES run forced by climatological winds. The following scenario is suggested for low-frequency KE variability: basin-scale wind variability excites broadscale Rossby waves, which propagate westward, triggering intrinsic modes of the KE jet and reorganizing SSH variability in space. |
doi_str_mv | 10.1175/jcli4142.1 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20996086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26260460</jstor_id><sourcerecordid>26260460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c512t-f6e7e615a2c3e816ed827dd075000df65338f839434e4c02a601be062fdafc423</originalsourceid><addsrcrecordid>eNp10MFLwzAUBvAgCs7pxbtQFD0InS9pkqZHmVOnAy_qNWRpwlK6RpMW3H9vy4aC4CmH93sfLx9CpxgmGOfsptK1o5iSCd5DI8wIpEAp2UcjEAVNRc7YITqKsQLAhAOMUHpntCpVnbyr4NTS1a7dJN4m7cokz13wceV8MvtqTROdb47RgVV1NCe7d4ze7mev08d08fIwn94uUs0waVPLTW44ZorozAjMTSlIXpaQMwAoLWdZJqzICppRQzUQxQEvDXBiS2U1JdkYXW1zP4L_7Exs5dpFbepaNcZ3URIoCg6C9_DiD6x8F5r-NkkEpoJDwWivzv9VhAyt8KJH11uk-1_HYKz8CG6twkZikEO58mm6mA_lStzjy12iilrVNqhGu_i7IQTlgg6hZ1tXxdaHnznhffuUQ_YNiOR_zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222875569</pqid></control><display><type>article</type><title>Decadal Variability of the Kuroshio Extension: Observations and an Eddy-Resolving Model Hindcast</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Taguchi, Bunmei ; Xie, Shang-Ping ; Schneider, Niklas ; Nonaka, Masami ; Sasaki, Hideharu ; Sasai, Yoshikazu</creator><creatorcontrib>Taguchi, Bunmei ; Xie, Shang-Ping ; Schneider, Niklas ; Nonaka, Masami ; Sasaki, Hideharu ; Sasai, Yoshikazu</creatorcontrib><description>Low-frequency variability of the Kuroshio Extension (KE) is studied using observations and a multidecadal (1950–2003) hindcast by a high-resolution (0.1°), eddy-resolving, global ocean general circulation model for the Earth Simulator (OFES). In both the OFES hindcast and satellite altimeter observations, low-frequency sea surface height (SSH) variability in the North Pacific is high near the KE front. An empirical orthogonal function (EOF) analysis indicates that much of the SSH variability in the western North Pacific east of Japan is explained by two modes with meridional structures tightly trapped along the KE front. The first mode represents a southward shift and to a lesser degree, an acceleration of the KE jet associated with the 1976/77 shift in basin-scale winds. The second mode reflects quasi-decadal variations in the intensity of the KE jet. Both the spatial structure and time series of these modes derived from the hindcast are in close agreement with observations.
A linear Rossby wave model forced by observed wind successfully reproduces the time series of the leading OFES modes but fails to explain why their meridional structure is concentrated on the KE front and inconsistent with the broadscale wind forcing. Further analysis suggests that KE variability may be decomposed into broad-and frontal-scale components in the meridional direction—the former following the linear Rossby wave solution and the latter closely resembling ocean intrinsic modes derived from an OFES run forced by climatological winds. The following scenario is suggested for low-frequency KE variability: basin-scale wind variability excites broadscale Rossby waves, which propagate westward, triggering intrinsic modes of the KE jet and reorganizing SSH variability in space.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/jcli4142.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Altimeters ; Atmosphere ; Atmospheric boundary layer ; Atmospheric models ; Atmospherics ; Climate ; Climate change ; Climate models ; Decadal variations ; Dynamics of the ocean (upper and deep oceans) ; Earth, ocean, space ; Empirical analysis ; Exact sciences and technology ; External geophysics ; General circulation models ; Long-term changes ; Marine ; Meteorology ; Modeling ; Modes ; Ocean circulation ; Oceanic climates ; Oceanic general circulation model ; Oceans ; Orthogonal functions ; Physics of the oceans ; Planetary waves ; Regression analysis ; Rossby waves ; Salinity ; Satellite altimetry ; Satellite observation ; Sea surface ; Simulators ; Standard deviation ; Statistical variance ; Time series ; Variability ; Vortices ; Wind ; Wind variability ; Winds</subject><ispartof>Journal of climate, 2007-06, Vol.20 (11), p.2357-2377</ispartof><rights>2007 American Meteorological Society</rights><rights>2007 INIST-CNRS</rights><rights>Copyright American Meteorological Society Jun 1, 2007</rights><rights>Copyright American Meteorological Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c512t-f6e7e615a2c3e816ed827dd075000df65338f839434e4c02a601be062fdafc423</citedby><cites>FETCH-LOGICAL-c512t-f6e7e615a2c3e816ed827dd075000df65338f839434e4c02a601be062fdafc423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26260460$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26260460$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18846849$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Taguchi, Bunmei</creatorcontrib><creatorcontrib>Xie, Shang-Ping</creatorcontrib><creatorcontrib>Schneider, Niklas</creatorcontrib><creatorcontrib>Nonaka, Masami</creatorcontrib><creatorcontrib>Sasaki, Hideharu</creatorcontrib><creatorcontrib>Sasai, Yoshikazu</creatorcontrib><title>Decadal Variability of the Kuroshio Extension: Observations and an Eddy-Resolving Model Hindcast</title><title>Journal of climate</title><description>Low-frequency variability of the Kuroshio Extension (KE) is studied using observations and a multidecadal (1950–2003) hindcast by a high-resolution (0.1°), eddy-resolving, global ocean general circulation model for the Earth Simulator (OFES). In both the OFES hindcast and satellite altimeter observations, low-frequency sea surface height (SSH) variability in the North Pacific is high near the KE front. An empirical orthogonal function (EOF) analysis indicates that much of the SSH variability in the western North Pacific east of Japan is explained by two modes with meridional structures tightly trapped along the KE front. The first mode represents a southward shift and to a lesser degree, an acceleration of the KE jet associated with the 1976/77 shift in basin-scale winds. The second mode reflects quasi-decadal variations in the intensity of the KE jet. Both the spatial structure and time series of these modes derived from the hindcast are in close agreement with observations.
A linear Rossby wave model forced by observed wind successfully reproduces the time series of the leading OFES modes but fails to explain why their meridional structure is concentrated on the KE front and inconsistent with the broadscale wind forcing. Further analysis suggests that KE variability may be decomposed into broad-and frontal-scale components in the meridional direction—the former following the linear Rossby wave solution and the latter closely resembling ocean intrinsic modes derived from an OFES run forced by climatological winds. The following scenario is suggested for low-frequency KE variability: basin-scale wind variability excites broadscale Rossby waves, which propagate westward, triggering intrinsic modes of the KE jet and reorganizing SSH variability in space.</description><subject>Altimeters</subject><subject>Atmosphere</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric models</subject><subject>Atmospherics</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Decadal variations</subject><subject>Dynamics of the ocean (upper and deep oceans)</subject><subject>Earth, ocean, space</subject><subject>Empirical analysis</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>General circulation models</subject><subject>Long-term changes</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Modeling</subject><subject>Modes</subject><subject>Ocean circulation</subject><subject>Oceanic climates</subject><subject>Oceanic general circulation model</subject><subject>Oceans</subject><subject>Orthogonal functions</subject><subject>Physics of the oceans</subject><subject>Planetary waves</subject><subject>Regression analysis</subject><subject>Rossby waves</subject><subject>Salinity</subject><subject>Satellite altimetry</subject><subject>Satellite observation</subject><subject>Sea surface</subject><subject>Simulators</subject><subject>Standard deviation</subject><subject>Statistical variance</subject><subject>Time series</subject><subject>Variability</subject><subject>Vortices</subject><subject>Wind</subject><subject>Wind variability</subject><subject>Winds</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10MFLwzAUBvAgCs7pxbtQFD0InS9pkqZHmVOnAy_qNWRpwlK6RpMW3H9vy4aC4CmH93sfLx9CpxgmGOfsptK1o5iSCd5DI8wIpEAp2UcjEAVNRc7YITqKsQLAhAOMUHpntCpVnbyr4NTS1a7dJN4m7cokz13wceV8MvtqTROdb47RgVV1NCe7d4ze7mev08d08fIwn94uUs0waVPLTW44ZorozAjMTSlIXpaQMwAoLWdZJqzICppRQzUQxQEvDXBiS2U1JdkYXW1zP4L_7Exs5dpFbepaNcZ3URIoCg6C9_DiD6x8F5r-NkkEpoJDwWivzv9VhAyt8KJH11uk-1_HYKz8CG6twkZikEO58mm6mA_lStzjy12iilrVNqhGu_i7IQTlgg6hZ1tXxdaHnznhffuUQ_YNiOR_zw</recordid><startdate>20070601</startdate><enddate>20070601</enddate><creator>Taguchi, Bunmei</creator><creator>Xie, Shang-Ping</creator><creator>Schneider, Niklas</creator><creator>Nonaka, Masami</creator><creator>Sasaki, Hideharu</creator><creator>Sasai, Yoshikazu</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>7TN</scope></search><sort><creationdate>20070601</creationdate><title>Decadal Variability of the Kuroshio Extension</title><author>Taguchi, Bunmei ; Xie, Shang-Ping ; Schneider, Niklas ; Nonaka, Masami ; Sasaki, Hideharu ; Sasai, Yoshikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c512t-f6e7e615a2c3e816ed827dd075000df65338f839434e4c02a601be062fdafc423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Altimeters</topic><topic>Atmosphere</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric models</topic><topic>Atmospherics</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Decadal variations</topic><topic>Dynamics of the ocean (upper and deep oceans)</topic><topic>Earth, ocean, space</topic><topic>Empirical analysis</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>General circulation models</topic><topic>Long-term changes</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Modeling</topic><topic>Modes</topic><topic>Ocean circulation</topic><topic>Oceanic climates</topic><topic>Oceanic general circulation model</topic><topic>Oceans</topic><topic>Orthogonal functions</topic><topic>Physics of the oceans</topic><topic>Planetary waves</topic><topic>Regression analysis</topic><topic>Rossby waves</topic><topic>Salinity</topic><topic>Satellite altimetry</topic><topic>Satellite observation</topic><topic>Sea surface</topic><topic>Simulators</topic><topic>Standard deviation</topic><topic>Statistical variance</topic><topic>Time series</topic><topic>Variability</topic><topic>Vortices</topic><topic>Wind</topic><topic>Wind variability</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taguchi, Bunmei</creatorcontrib><creatorcontrib>Xie, Shang-Ping</creatorcontrib><creatorcontrib>Schneider, Niklas</creatorcontrib><creatorcontrib>Nonaka, Masami</creatorcontrib><creatorcontrib>Sasaki, Hideharu</creatorcontrib><creatorcontrib>Sasai, Yoshikazu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taguchi, Bunmei</au><au>Xie, Shang-Ping</au><au>Schneider, Niklas</au><au>Nonaka, Masami</au><au>Sasaki, Hideharu</au><au>Sasai, Yoshikazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decadal Variability of the Kuroshio Extension: Observations and an Eddy-Resolving Model Hindcast</atitle><jtitle>Journal of climate</jtitle><date>2007-06-01</date><risdate>2007</risdate><volume>20</volume><issue>11</issue><spage>2357</spage><epage>2377</epage><pages>2357-2377</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Low-frequency variability of the Kuroshio Extension (KE) is studied using observations and a multidecadal (1950–2003) hindcast by a high-resolution (0.1°), eddy-resolving, global ocean general circulation model for the Earth Simulator (OFES). In both the OFES hindcast and satellite altimeter observations, low-frequency sea surface height (SSH) variability in the North Pacific is high near the KE front. An empirical orthogonal function (EOF) analysis indicates that much of the SSH variability in the western North Pacific east of Japan is explained by two modes with meridional structures tightly trapped along the KE front. The first mode represents a southward shift and to a lesser degree, an acceleration of the KE jet associated with the 1976/77 shift in basin-scale winds. The second mode reflects quasi-decadal variations in the intensity of the KE jet. Both the spatial structure and time series of these modes derived from the hindcast are in close agreement with observations.
A linear Rossby wave model forced by observed wind successfully reproduces the time series of the leading OFES modes but fails to explain why their meridional structure is concentrated on the KE front and inconsistent with the broadscale wind forcing. Further analysis suggests that KE variability may be decomposed into broad-and frontal-scale components in the meridional direction—the former following the linear Rossby wave solution and the latter closely resembling ocean intrinsic modes derived from an OFES run forced by climatological winds. The following scenario is suggested for low-frequency KE variability: basin-scale wind variability excites broadscale Rossby waves, which propagate westward, triggering intrinsic modes of the KE jet and reorganizing SSH variability in space.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jcli4142.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2007-06, Vol.20 (11), p.2357-2377 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_20996086 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Altimeters Atmosphere Atmospheric boundary layer Atmospheric models Atmospherics Climate Climate change Climate models Decadal variations Dynamics of the ocean (upper and deep oceans) Earth, ocean, space Empirical analysis Exact sciences and technology External geophysics General circulation models Long-term changes Marine Meteorology Modeling Modes Ocean circulation Oceanic climates Oceanic general circulation model Oceans Orthogonal functions Physics of the oceans Planetary waves Regression analysis Rossby waves Salinity Satellite altimetry Satellite observation Sea surface Simulators Standard deviation Statistical variance Time series Variability Vortices Wind Wind variability Winds |
title | Decadal Variability of the Kuroshio Extension: Observations and an Eddy-Resolving Model Hindcast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A24%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decadal%20Variability%20of%20the%20Kuroshio%20Extension:%20Observations%20and%20an%20Eddy-Resolving%20Model%20Hindcast&rft.jtitle=Journal%20of%20climate&rft.au=Taguchi,%20Bunmei&rft.date=2007-06-01&rft.volume=20&rft.issue=11&rft.spage=2357&rft.epage=2377&rft.pages=2357-2377&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/jcli4142.1&rft_dat=%3Cjstor_proqu%3E26260460%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222875569&rft_id=info:pmid/&rft_jstor_id=26260460&rfr_iscdi=true |