Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate

Three approaches are used to reduce the error in the satellite‐derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS‐1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research. B. Solid Earth 2009-01, Vol.114 (B1), p.n/a
Hauptverfasser: Sandwell, David T., Smith, Walter H. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue B1
container_start_page
container_title Journal of Geophysical Research. B. Solid Earth
container_volume 114
creator Sandwell, David T.
Smith, Walter H. F.
description Three approaches are used to reduce the error in the satellite‐derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS‐1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from land to ocean. Third, we have used a biharmonic spline interpolation method to construct residual vertical deflection grids. Comparisons between shipboard gravity and the global gravity grid show errors ranging from 2.0 mGal in the Gulf of Mexico to 4.0 mGal in areas with rugged seafloor topography. The largest errors of up to 20 mGal occur on the crests of narrow large seamounts. The global spreading ridges are well resolved and show variations in ridge axis morphology and segmentation with spreading rate. For rates less than about 60 mm/a the typical ridge segment is 50–80 km long while it increases dramatically at higher rates (100–1000 km). This transition spreading rate of 60 mm/a also marks the transition from axial valley to axial high. We speculate that a single mechanism controls both transitions; candidates include both lithospheric and asthenospheric processes.
doi_str_mv 10.1029/2008JB006008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20995075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20995075</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5109-ec1c5015d25400a9e3c83a1ef94511e0608b40a054966ae872797aa31c6e23843</originalsourceid><addsrcrecordid>eNp9kE1PFEEQhjtGEjfAzR_QFz05Uv01M-3NJThKCMRV4Ngpemo2LfOxdPei--8dsoR4si51qOd5k3oZeyvgowBpTyRAfb4EKOf9ii2kMGUhJcjXbAFC1wVIWb1hxyn9gnm0KTWIBQtNP91hzweMYSS-jvgY8o53cRp4pBzR31PLG5oSZo5jy89WPwrBsc9hmM-7T3wV2jXxROuBxow5TCN_pJi2iadNJGzDuOYRMx2xgw77RMfP-5Bdfzn7efq1uLhqvp1-vijQCLAFeeENCNNKowHQkvK1QkGd1UYImt-r7zQgGG3LEqmuZGUrRCV8SVLVWh2y9_vcTZwetpSyG0Ly1Pc40rRNToK1Biozgx_2oI9TSpE6t4lh7mHnBLinSt2_lc74u-dcTB77LuLoQ3pxpBC1VcrOnNpzv0NPu_9muvNmtRTGiier2FshZfrzYmG8d2WlKuNuLxt3o1aXdqlv3Xf1F-O2koo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20995075</pqid></control><display><type>article</type><title>Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate</title><source>Wiley-Blackwell Journals</source><source>Wiley Free Archive</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Sandwell, David T. ; Smith, Walter H. F.</creator><creatorcontrib>Sandwell, David T. ; Smith, Walter H. F.</creatorcontrib><description>Three approaches are used to reduce the error in the satellite‐derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS‐1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from land to ocean. Third, we have used a biharmonic spline interpolation method to construct residual vertical deflection grids. Comparisons between shipboard gravity and the global gravity grid show errors ranging from 2.0 mGal in the Gulf of Mexico to 4.0 mGal in areas with rugged seafloor topography. The largest errors of up to 20 mGal occur on the crests of narrow large seamounts. The global spreading ridges are well resolved and show variations in ridge axis morphology and segmentation with spreading rate. For rates less than about 60 mm/a the typical ridge segment is 50–80 km long while it increases dramatically at higher rates (100–1000 km). This transition spreading rate of 60 mm/a also marks the transition from axial valley to axial high. We speculate that a single mechanism controls both transitions; candidates include both lithospheric and asthenospheric processes.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1029/2008JB006008</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Marine ; marine gravity ; ridge segmentation ; satellite altimetry</subject><ispartof>Journal of Geophysical Research. B. Solid Earth, 2009-01, Vol.114 (B1), p.n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5109-ec1c5015d25400a9e3c83a1ef94511e0608b40a054966ae872797aa31c6e23843</citedby><cites>FETCH-LOGICAL-a5109-ec1c5015d25400a9e3c83a1ef94511e0608b40a054966ae872797aa31c6e23843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2008JB006008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2008JB006008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21189339$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandwell, David T.</creatorcontrib><creatorcontrib>Smith, Walter H. F.</creatorcontrib><title>Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate</title><title>Journal of Geophysical Research. B. Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>Three approaches are used to reduce the error in the satellite‐derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS‐1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from land to ocean. Third, we have used a biharmonic spline interpolation method to construct residual vertical deflection grids. Comparisons between shipboard gravity and the global gravity grid show errors ranging from 2.0 mGal in the Gulf of Mexico to 4.0 mGal in areas with rugged seafloor topography. The largest errors of up to 20 mGal occur on the crests of narrow large seamounts. The global spreading ridges are well resolved and show variations in ridge axis morphology and segmentation with spreading rate. For rates less than about 60 mm/a the typical ridge segment is 50–80 km long while it increases dramatically at higher rates (100–1000 km). This transition spreading rate of 60 mm/a also marks the transition from axial valley to axial high. We speculate that a single mechanism controls both transitions; candidates include both lithospheric and asthenospheric processes.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Marine</subject><subject>marine gravity</subject><subject>ridge segmentation</subject><subject>satellite altimetry</subject><issn>0148-0227</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PFEEQhjtGEjfAzR_QFz05Uv01M-3NJThKCMRV4Ngpemo2LfOxdPei--8dsoR4si51qOd5k3oZeyvgowBpTyRAfb4EKOf9ii2kMGUhJcjXbAFC1wVIWb1hxyn9gnm0KTWIBQtNP91hzweMYSS-jvgY8o53cRp4pBzR31PLG5oSZo5jy89WPwrBsc9hmM-7T3wV2jXxROuBxow5TCN_pJi2iadNJGzDuOYRMx2xgw77RMfP-5Bdfzn7efq1uLhqvp1-vijQCLAFeeENCNNKowHQkvK1QkGd1UYImt-r7zQgGG3LEqmuZGUrRCV8SVLVWh2y9_vcTZwetpSyG0Ly1Pc40rRNToK1Biozgx_2oI9TSpE6t4lh7mHnBLinSt2_lc74u-dcTB77LuLoQ3pxpBC1VcrOnNpzv0NPu_9muvNmtRTGiier2FshZfrzYmG8d2WlKuNuLxt3o1aXdqlv3Xf1F-O2koo</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Sandwell, David T.</creator><creator>Smith, Walter H. F.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>200901</creationdate><title>Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate</title><author>Sandwell, David T. ; Smith, Walter H. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5109-ec1c5015d25400a9e3c83a1ef94511e0608b40a054966ae872797aa31c6e23843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Marine</topic><topic>marine gravity</topic><topic>ridge segmentation</topic><topic>satellite altimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandwell, David T.</creatorcontrib><creatorcontrib>Smith, Walter H. F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandwell, David T.</au><au>Smith, Walter H. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate</atitle><jtitle>Journal of Geophysical Research. B. Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2009-01</date><risdate>2009</risdate><volume>114</volume><issue>B1</issue><epage>n/a</epage><issn>0148-0227</issn><eissn>2156-2202</eissn><abstract>Three approaches are used to reduce the error in the satellite‐derived marine gravity anomalies. First, we have retracked the raw waveforms from the ERS‐1 and Geosat/GM missions resulting in improvements in range precision of 40% and 27%, respectively. Second, we have used the recently published EGM2008 global gravity model as a reference field to provide a seamless gravity transition from land to ocean. Third, we have used a biharmonic spline interpolation method to construct residual vertical deflection grids. Comparisons between shipboard gravity and the global gravity grid show errors ranging from 2.0 mGal in the Gulf of Mexico to 4.0 mGal in areas with rugged seafloor topography. The largest errors of up to 20 mGal occur on the crests of narrow large seamounts. The global spreading ridges are well resolved and show variations in ridge axis morphology and segmentation with spreading rate. For rates less than about 60 mm/a the typical ridge segment is 50–80 km long while it increases dramatically at higher rates (100–1000 km). This transition spreading rate of 60 mm/a also marks the transition from axial valley to axial high. We speculate that a single mechanism controls both transitions; candidates include both lithospheric and asthenospheric processes.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2008JB006008</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research. B. Solid Earth, 2009-01, Vol.114 (B1), p.n/a
issn 0148-0227
2156-2202
language eng
recordid cdi_proquest_miscellaneous_20995075
source Wiley-Blackwell Journals; Wiley Free Archive; Wiley-Blackwell AGU Digital Archive; Alma/SFX Local Collection
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
Marine
marine gravity
ridge segmentation
satellite altimetry
title Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A17%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20marine%20gravity%20from%20retracked%20Geosat%20and%20ERS-1%20altimetry:%20Ridge%20segmentation%20versus%20spreading%20rate&rft.jtitle=Journal%20of%20Geophysical%20Research.%20B.%20Solid%20Earth&rft.au=Sandwell,%20David%20T.&rft.date=2009-01&rft.volume=114&rft.issue=B1&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2008JB006008&rft_dat=%3Cproquest_cross%3E20995075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20995075&rft_id=info:pmid/&rfr_iscdi=true