Parameter estimation for a physics-based distributed hydrologic model using measured outflow fluxes and internal moisture states

We use an inverse simulation strategy to estimate soil hydraulic parameter values for an extensively measured planar hillslope plot in Seattle, Washington, United States. Both the integrated (subsurface outflow) and internal (piezometer water levels, volumetric water contents) hydrologic responses a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2007-12, Vol.43 (12), p.n/a
Hauptverfasser: Kampf, S.K, Burges, S.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Water resources research
container_volume 43
creator Kampf, S.K
Burges, S.J
description We use an inverse simulation strategy to estimate soil hydraulic parameter values for an extensively measured planar hillslope plot in Seattle, Washington, United States. Both the integrated (subsurface outflow) and internal (piezometer water levels, volumetric water contents) hydrologic responses are measured at the plot. Inverse simulation scenarios are configured in the physics‐based variably saturated hydrologic model, HYDRUS‐2D, for a nonhysteretic drainage scenario starting from saturated initial conditions. Multiple inverse simulations calibrate the model either to single‐measurement time series or to combinations of multiple types of measurements. Inverse simulations calibrated to different types of measurements give a wide range of parameter combinations, including over 2 orders of magnitude in predicted saturated hydraulic conductivity (Ks), in part because the calibrations to a single measurement type are poorly constrained and biased. Parameter values are better constrained with multiobjective inverse simulations (Ks from 30 to 55 cm h−1). All parameter combinations from inverse simulations were tested in 2‐month‐long continuous simulations of the plot flow response to natural precipitation and evapotranspiration. The long‐term outflow response was predicted best (Nash‐Sutcliffe E = 0.94) by the parameters from a multiobjective inverse simulation calibrated to both the outflow and the piezometer water levels. Overall results show that for an assumed nonhysteretic soil a physics‐based hydrologic response model can be calibrated using one short‐duration drainage‐from‐saturation event if both integrated (outflow) and internal (saturated water level) measurements are used as calibration objectives.
doi_str_mv 10.1029/2006WR005605
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20991796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20991796</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3950-35866bdcca471bf2200d8664850f65ef450278418aac2d16862e08f986898ad53</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EEkvhxh2fOBEYxx-xjyiCAqpKtaUq4mLNJvbWkMSLnajdG386RkEVJ062PL_3Ru-ZkOcMXjOozZsaQF1vAaQC-YBsmBGiakzDH5INgOAV46Z5TJ7k_B2ACamaDfl1gQlHN7tEXZ7DiHOIE_UxUaSHm2MOXa52mF1P-5DnFHbLXO43xz7FIe5DR8fYu4EuOUx7OjrMSyrzuMx-iLfUD8udyxSnnoap7JhwKIJiVCiaZ5xdfkoeeRyye_b3PCFX7999aT9UZ59PP7ZvzyrkRkLFpVZq13cdiobtfF2i9uVFaAleSeeFhLrRgmnEru6Z0qp2oL3RShuNveQn5OXqe0jx51Ky2jHkzg0DTi4u2dZgDGuMKuCrFexSzDk5bw-p9JKOloH9U7P9t-aC8xW_DYM7_pe119t2yxjjUFTVqipduLt7FaYfVjW8Kej5qQX5tf70rRW2LfyLlfcYLe5TyPbqsoZiBVqVH9b8N26HmUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20991796</pqid></control><display><type>article</type><title>Parameter estimation for a physics-based distributed hydrologic model using measured outflow fluxes and internal moisture states</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><creator>Kampf, S.K ; Burges, S.J</creator><creatorcontrib>Kampf, S.K ; Burges, S.J</creatorcontrib><description>We use an inverse simulation strategy to estimate soil hydraulic parameter values for an extensively measured planar hillslope plot in Seattle, Washington, United States. Both the integrated (subsurface outflow) and internal (piezometer water levels, volumetric water contents) hydrologic responses are measured at the plot. Inverse simulation scenarios are configured in the physics‐based variably saturated hydrologic model, HYDRUS‐2D, for a nonhysteretic drainage scenario starting from saturated initial conditions. Multiple inverse simulations calibrate the model either to single‐measurement time series or to combinations of multiple types of measurements. Inverse simulations calibrated to different types of measurements give a wide range of parameter combinations, including over 2 orders of magnitude in predicted saturated hydraulic conductivity (Ks), in part because the calibrations to a single measurement type are poorly constrained and biased. Parameter values are better constrained with multiobjective inverse simulations (Ks from 30 to 55 cm h−1). All parameter combinations from inverse simulations were tested in 2‐month‐long continuous simulations of the plot flow response to natural precipitation and evapotranspiration. The long‐term outflow response was predicted best (Nash‐Sutcliffe E = 0.94) by the parameters from a multiobjective inverse simulation calibrated to both the outflow and the piezometer water levels. Overall results show that for an assumed nonhysteretic soil a physics‐based hydrologic response model can be calibrated using one short‐duration drainage‐from‐saturation event if both integrated (outflow) and internal (saturated water level) measurements are used as calibration objectives.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2006WR005605</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>calibration ; distributed measurements ; drainage ; evapotranspiration ; experimental plot ; hydraulic conductivity ; hydrologic models ; hysteresis ; inverse simulation ; physical models ; physics ; piezometers ; precipitation ; prediction ; saturated flow ; simulation models ; slope ; soil hydraulic parameter estimation ; soil hydraulic properties ; soil water content ; spatial data ; spatial hydrologic model ; subsurface drainage ; subsurface flow ; till soil</subject><ispartof>Water resources research, 2007-12, Vol.43 (12), p.n/a</ispartof><rights>Copyright 2007 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3950-35866bdcca471bf2200d8664850f65ef450278418aac2d16862e08f986898ad53</citedby><cites>FETCH-LOGICAL-a3950-35866bdcca471bf2200d8664850f65ef450278418aac2d16862e08f986898ad53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2006WR005605$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2006WR005605$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11514,27924,27925,45574,45575,46468,46892</link.rule.ids></links><search><creatorcontrib>Kampf, S.K</creatorcontrib><creatorcontrib>Burges, S.J</creatorcontrib><title>Parameter estimation for a physics-based distributed hydrologic model using measured outflow fluxes and internal moisture states</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>We use an inverse simulation strategy to estimate soil hydraulic parameter values for an extensively measured planar hillslope plot in Seattle, Washington, United States. Both the integrated (subsurface outflow) and internal (piezometer water levels, volumetric water contents) hydrologic responses are measured at the plot. Inverse simulation scenarios are configured in the physics‐based variably saturated hydrologic model, HYDRUS‐2D, for a nonhysteretic drainage scenario starting from saturated initial conditions. Multiple inverse simulations calibrate the model either to single‐measurement time series or to combinations of multiple types of measurements. Inverse simulations calibrated to different types of measurements give a wide range of parameter combinations, including over 2 orders of magnitude in predicted saturated hydraulic conductivity (Ks), in part because the calibrations to a single measurement type are poorly constrained and biased. Parameter values are better constrained with multiobjective inverse simulations (Ks from 30 to 55 cm h−1). All parameter combinations from inverse simulations were tested in 2‐month‐long continuous simulations of the plot flow response to natural precipitation and evapotranspiration. The long‐term outflow response was predicted best (Nash‐Sutcliffe E = 0.94) by the parameters from a multiobjective inverse simulation calibrated to both the outflow and the piezometer water levels. Overall results show that for an assumed nonhysteretic soil a physics‐based hydrologic response model can be calibrated using one short‐duration drainage‐from‐saturation event if both integrated (outflow) and internal (saturated water level) measurements are used as calibration objectives.</description><subject>calibration</subject><subject>distributed measurements</subject><subject>drainage</subject><subject>evapotranspiration</subject><subject>experimental plot</subject><subject>hydraulic conductivity</subject><subject>hydrologic models</subject><subject>hysteresis</subject><subject>inverse simulation</subject><subject>physical models</subject><subject>physics</subject><subject>piezometers</subject><subject>precipitation</subject><subject>prediction</subject><subject>saturated flow</subject><subject>simulation models</subject><subject>slope</subject><subject>soil hydraulic parameter estimation</subject><subject>soil hydraulic properties</subject><subject>soil water content</subject><subject>spatial data</subject><subject>spatial hydrologic model</subject><subject>subsurface drainage</subject><subject>subsurface flow</subject><subject>till soil</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxS0EEkvhxh2fOBEYxx-xjyiCAqpKtaUq4mLNJvbWkMSLnajdG386RkEVJ062PL_3Ru-ZkOcMXjOozZsaQF1vAaQC-YBsmBGiakzDH5INgOAV46Z5TJ7k_B2ACamaDfl1gQlHN7tEXZ7DiHOIE_UxUaSHm2MOXa52mF1P-5DnFHbLXO43xz7FIe5DR8fYu4EuOUx7OjrMSyrzuMx-iLfUD8udyxSnnoap7JhwKIJiVCiaZ5xdfkoeeRyye_b3PCFX7999aT9UZ59PP7ZvzyrkRkLFpVZq13cdiobtfF2i9uVFaAleSeeFhLrRgmnEru6Z0qp2oL3RShuNveQn5OXqe0jx51Ky2jHkzg0DTi4u2dZgDGuMKuCrFexSzDk5bw-p9JKOloH9U7P9t-aC8xW_DYM7_pe119t2yxjjUFTVqipduLt7FaYfVjW8Kej5qQX5tf70rRW2LfyLlfcYLe5TyPbqsoZiBVqVH9b8N26HmUY</recordid><startdate>200712</startdate><enddate>200712</enddate><creator>Kampf, S.K</creator><creator>Burges, S.J</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200712</creationdate><title>Parameter estimation for a physics-based distributed hydrologic model using measured outflow fluxes and internal moisture states</title><author>Kampf, S.K ; Burges, S.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3950-35866bdcca471bf2200d8664850f65ef450278418aac2d16862e08f986898ad53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>calibration</topic><topic>distributed measurements</topic><topic>drainage</topic><topic>evapotranspiration</topic><topic>experimental plot</topic><topic>hydraulic conductivity</topic><topic>hydrologic models</topic><topic>hysteresis</topic><topic>inverse simulation</topic><topic>physical models</topic><topic>physics</topic><topic>piezometers</topic><topic>precipitation</topic><topic>prediction</topic><topic>saturated flow</topic><topic>simulation models</topic><topic>slope</topic><topic>soil hydraulic parameter estimation</topic><topic>soil hydraulic properties</topic><topic>soil water content</topic><topic>spatial data</topic><topic>spatial hydrologic model</topic><topic>subsurface drainage</topic><topic>subsurface flow</topic><topic>till soil</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kampf, S.K</creatorcontrib><creatorcontrib>Burges, S.J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kampf, S.K</au><au>Burges, S.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter estimation for a physics-based distributed hydrologic model using measured outflow fluxes and internal moisture states</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2007-12</date><risdate>2007</risdate><volume>43</volume><issue>12</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>We use an inverse simulation strategy to estimate soil hydraulic parameter values for an extensively measured planar hillslope plot in Seattle, Washington, United States. Both the integrated (subsurface outflow) and internal (piezometer water levels, volumetric water contents) hydrologic responses are measured at the plot. Inverse simulation scenarios are configured in the physics‐based variably saturated hydrologic model, HYDRUS‐2D, for a nonhysteretic drainage scenario starting from saturated initial conditions. Multiple inverse simulations calibrate the model either to single‐measurement time series or to combinations of multiple types of measurements. Inverse simulations calibrated to different types of measurements give a wide range of parameter combinations, including over 2 orders of magnitude in predicted saturated hydraulic conductivity (Ks), in part because the calibrations to a single measurement type are poorly constrained and biased. Parameter values are better constrained with multiobjective inverse simulations (Ks from 30 to 55 cm h−1). All parameter combinations from inverse simulations were tested in 2‐month‐long continuous simulations of the plot flow response to natural precipitation and evapotranspiration. The long‐term outflow response was predicted best (Nash‐Sutcliffe E = 0.94) by the parameters from a multiobjective inverse simulation calibrated to both the outflow and the piezometer water levels. Overall results show that for an assumed nonhysteretic soil a physics‐based hydrologic response model can be calibrated using one short‐duration drainage‐from‐saturation event if both integrated (outflow) and internal (saturated water level) measurements are used as calibration objectives.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2006WR005605</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2007-12, Vol.43 (12), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_20991796
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library
subjects calibration
distributed measurements
drainage
evapotranspiration
experimental plot
hydraulic conductivity
hydrologic models
hysteresis
inverse simulation
physical models
physics
piezometers
precipitation
prediction
saturated flow
simulation models
slope
soil hydraulic parameter estimation
soil hydraulic properties
soil water content
spatial data
spatial hydrologic model
subsurface drainage
subsurface flow
till soil
title Parameter estimation for a physics-based distributed hydrologic model using measured outflow fluxes and internal moisture states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A53%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20estimation%20for%20a%20physics-based%20distributed%20hydrologic%20model%20using%20measured%20outflow%20fluxes%20and%20internal%20moisture%20states&rft.jtitle=Water%20resources%20research&rft.au=Kampf,%20S.K&rft.date=2007-12&rft.volume=43&rft.issue=12&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2006WR005605&rft_dat=%3Cproquest_cross%3E20991796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20991796&rft_id=info:pmid/&rfr_iscdi=true