Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application

Any cell within a tissue is constantly confronted with a variety of mechanical stimuli. Sensing of these diverse stimuli plays an important role in cellular regulation. Besides shear stress, cells of the vascular endothelium are particularly exposed to a permanent cyclic straining originating from t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytoskeleton (Hoboken, N.J.) N.J.), 2018-09, Vol.75 (9), p.385-394
Hauptverfasser: Zielinski, Alexander, Linnartz, Christina, Pleschka, Catharina, Dreissen, Georg, Springer, Ronald, Merkel, Rudolf, Hoffmann, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 394
container_issue 9
container_start_page 385
container_title Cytoskeleton (Hoboken, N.J.)
container_volume 75
creator Zielinski, Alexander
Linnartz, Christina
Pleschka, Catharina
Dreissen, Georg
Springer, Ronald
Merkel, Rudolf
Hoffmann, Bernd
description Any cell within a tissue is constantly confronted with a variety of mechanical stimuli. Sensing of these diverse stimuli plays an important role in cellular regulation. Besides shear stress, cells of the vascular endothelium are particularly exposed to a permanent cyclic straining originating from the interplay of outwards pushing blood pressure and inwards acting contraction by smooth musculature. Perpendicular alignment of cells as structural adaptation to this condition is a basic prerequisite in order to withstand deformation forces. Here, we combine live cell approaches with immunocytochemical analyses on single cell level to closely elucidate the mechanisms of cytoskeletal realignment to cyclic strain and consolidate orientation analyses of actin fibres, microtubules (MTs) and vimentin. We could show that strain‐induced reorientation takes place for all cytoskeletal systems. However, all systems are characterized by their own, specific reorientation time course with actin filaments reorienting first followed by MTs and finally vimentin. Interestingly, in all cases, this reorientation was faster than cell body realignment which argues for an active adaptation mechanism for all cytoskeletal systems. Upon actin destabilization, already smallest alterations in actin kinetics massively hamper cell morphology under strain and therefore overall reorientation. Depolymerization of MTs just slightly influences actin reorientation velocity but strongly affects cell body reorientation.
doi_str_mv 10.1002/cm.21470
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2099042942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2137341300</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4150-d5d8bc6258e359b45a6dbdf5662f85e9206fe8663ce417e9c1b8f28a6bcb835e3</originalsourceid><addsrcrecordid>eNp1kdtKHTEUhkOp1EMLfYIS6E0vHM1psieXZVMPoAjSXodMsoZGZjLTHJD9CL61cW-rIHiVFfjWt5L1I_SVkhNKCDu10wmjYkU-oAOqhGp4q9jHl7oT--gwpTtCpOKEf0L7nNCVpIweoIdbmKOHkE32c8BuE8zkbcImOJxyLDaXaEbsQ4boYIHgIFgPCc8DNjb7cIwrH-dc-jLCrm8LT-C8yYAHP5qp-hMuSx1gN3b09kkN2f7FZlnqdTv7M9obzJjgy_N5hP6c_fq9vmiubs4v1z-vGitoSxrXuq63krUd1F_2ojXS9W5opWRD14JiRA7QScktCLoCZWnfDawzsrd9x1vgR-jHzrvE-V-BlPXkk4VxNAHmkjQjShHBlGAV_f4GvZtLDPV1mlG-4oJyQl6FdQ0pRRj0Ev1k4kZTop_i0XbS23gq-u1ZWPq6oBfwfx4VaHbAvR9h865Ir693wkfq2pt4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2137341300</pqid></control><display><type>article</type><title>Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application</title><source>Wiley Online Library All Journals</source><creator>Zielinski, Alexander ; Linnartz, Christina ; Pleschka, Catharina ; Dreissen, Georg ; Springer, Ronald ; Merkel, Rudolf ; Hoffmann, Bernd</creator><creatorcontrib>Zielinski, Alexander ; Linnartz, Christina ; Pleschka, Catharina ; Dreissen, Georg ; Springer, Ronald ; Merkel, Rudolf ; Hoffmann, Bernd</creatorcontrib><description>Any cell within a tissue is constantly confronted with a variety of mechanical stimuli. Sensing of these diverse stimuli plays an important role in cellular regulation. Besides shear stress, cells of the vascular endothelium are particularly exposed to a permanent cyclic straining originating from the interplay of outwards pushing blood pressure and inwards acting contraction by smooth musculature. Perpendicular alignment of cells as structural adaptation to this condition is a basic prerequisite in order to withstand deformation forces. Here, we combine live cell approaches with immunocytochemical analyses on single cell level to closely elucidate the mechanisms of cytoskeletal realignment to cyclic strain and consolidate orientation analyses of actin fibres, microtubules (MTs) and vimentin. We could show that strain‐induced reorientation takes place for all cytoskeletal systems. However, all systems are characterized by their own, specific reorientation time course with actin filaments reorienting first followed by MTs and finally vimentin. Interestingly, in all cases, this reorientation was faster than cell body realignment which argues for an active adaptation mechanism for all cytoskeletal systems. Upon actin destabilization, already smallest alterations in actin kinetics massively hamper cell morphology under strain and therefore overall reorientation. Depolymerization of MTs just slightly influences actin reorientation velocity but strongly affects cell body reorientation.</description><identifier>ISSN: 1949-3584</identifier><identifier>EISSN: 1949-3592</identifier><identifier>DOI: 10.1002/cm.21470</identifier><identifier>PMID: 30176121</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Actin ; Blood pressure ; Cell body ; Contraction ; cyclic stretch ; Cytology ; cytoskeletal reorientation ; Cytoskeleton ; Depolymerization ; Endothelium ; Filaments ; Intermediate filaments ; Mechanical stimuli ; mechanosensation ; Microtubules ; Vimentin</subject><ispartof>Cytoskeleton (Hoboken, N.J.), 2018-09, Vol.75 (9), p.385-394</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4150-d5d8bc6258e359b45a6dbdf5662f85e9206fe8663ce417e9c1b8f28a6bcb835e3</citedby><cites>FETCH-LOGICAL-c4150-d5d8bc6258e359b45a6dbdf5662f85e9206fe8663ce417e9c1b8f28a6bcb835e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcm.21470$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcm.21470$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30176121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zielinski, Alexander</creatorcontrib><creatorcontrib>Linnartz, Christina</creatorcontrib><creatorcontrib>Pleschka, Catharina</creatorcontrib><creatorcontrib>Dreissen, Georg</creatorcontrib><creatorcontrib>Springer, Ronald</creatorcontrib><creatorcontrib>Merkel, Rudolf</creatorcontrib><creatorcontrib>Hoffmann, Bernd</creatorcontrib><title>Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application</title><title>Cytoskeleton (Hoboken, N.J.)</title><addtitle>Cytoskeleton (Hoboken)</addtitle><description>Any cell within a tissue is constantly confronted with a variety of mechanical stimuli. Sensing of these diverse stimuli plays an important role in cellular regulation. Besides shear stress, cells of the vascular endothelium are particularly exposed to a permanent cyclic straining originating from the interplay of outwards pushing blood pressure and inwards acting contraction by smooth musculature. Perpendicular alignment of cells as structural adaptation to this condition is a basic prerequisite in order to withstand deformation forces. Here, we combine live cell approaches with immunocytochemical analyses on single cell level to closely elucidate the mechanisms of cytoskeletal realignment to cyclic strain and consolidate orientation analyses of actin fibres, microtubules (MTs) and vimentin. We could show that strain‐induced reorientation takes place for all cytoskeletal systems. However, all systems are characterized by their own, specific reorientation time course with actin filaments reorienting first followed by MTs and finally vimentin. Interestingly, in all cases, this reorientation was faster than cell body realignment which argues for an active adaptation mechanism for all cytoskeletal systems. Upon actin destabilization, already smallest alterations in actin kinetics massively hamper cell morphology under strain and therefore overall reorientation. Depolymerization of MTs just slightly influences actin reorientation velocity but strongly affects cell body reorientation.</description><subject>Actin</subject><subject>Blood pressure</subject><subject>Cell body</subject><subject>Contraction</subject><subject>cyclic stretch</subject><subject>Cytology</subject><subject>cytoskeletal reorientation</subject><subject>Cytoskeleton</subject><subject>Depolymerization</subject><subject>Endothelium</subject><subject>Filaments</subject><subject>Intermediate filaments</subject><subject>Mechanical stimuli</subject><subject>mechanosensation</subject><subject>Microtubules</subject><subject>Vimentin</subject><issn>1949-3584</issn><issn>1949-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kdtKHTEUhkOp1EMLfYIS6E0vHM1psieXZVMPoAjSXodMsoZGZjLTHJD9CL61cW-rIHiVFfjWt5L1I_SVkhNKCDu10wmjYkU-oAOqhGp4q9jHl7oT--gwpTtCpOKEf0L7nNCVpIweoIdbmKOHkE32c8BuE8zkbcImOJxyLDaXaEbsQ4boYIHgIFgPCc8DNjb7cIwrH-dc-jLCrm8LT-C8yYAHP5qp-hMuSx1gN3b09kkN2f7FZlnqdTv7M9obzJjgy_N5hP6c_fq9vmiubs4v1z-vGitoSxrXuq63krUd1F_2ojXS9W5opWRD14JiRA7QScktCLoCZWnfDawzsrd9x1vgR-jHzrvE-V-BlPXkk4VxNAHmkjQjShHBlGAV_f4GvZtLDPV1mlG-4oJyQl6FdQ0pRRj0Ev1k4kZTop_i0XbS23gq-u1ZWPq6oBfwfx4VaHbAvR9h865Ir693wkfq2pt4</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Zielinski, Alexander</creator><creator>Linnartz, Christina</creator><creator>Pleschka, Catharina</creator><creator>Dreissen, Georg</creator><creator>Springer, Ronald</creator><creator>Merkel, Rudolf</creator><creator>Hoffmann, Bernd</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201809</creationdate><title>Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application</title><author>Zielinski, Alexander ; Linnartz, Christina ; Pleschka, Catharina ; Dreissen, Georg ; Springer, Ronald ; Merkel, Rudolf ; Hoffmann, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4150-d5d8bc6258e359b45a6dbdf5662f85e9206fe8663ce417e9c1b8f28a6bcb835e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Actin</topic><topic>Blood pressure</topic><topic>Cell body</topic><topic>Contraction</topic><topic>cyclic stretch</topic><topic>Cytology</topic><topic>cytoskeletal reorientation</topic><topic>Cytoskeleton</topic><topic>Depolymerization</topic><topic>Endothelium</topic><topic>Filaments</topic><topic>Intermediate filaments</topic><topic>Mechanical stimuli</topic><topic>mechanosensation</topic><topic>Microtubules</topic><topic>Vimentin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zielinski, Alexander</creatorcontrib><creatorcontrib>Linnartz, Christina</creatorcontrib><creatorcontrib>Pleschka, Catharina</creatorcontrib><creatorcontrib>Dreissen, Georg</creatorcontrib><creatorcontrib>Springer, Ronald</creatorcontrib><creatorcontrib>Merkel, Rudolf</creatorcontrib><creatorcontrib>Hoffmann, Bernd</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytoskeleton (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zielinski, Alexander</au><au>Linnartz, Christina</au><au>Pleschka, Catharina</au><au>Dreissen, Georg</au><au>Springer, Ronald</au><au>Merkel, Rudolf</au><au>Hoffmann, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application</atitle><jtitle>Cytoskeleton (Hoboken, N.J.)</jtitle><addtitle>Cytoskeleton (Hoboken)</addtitle><date>2018-09</date><risdate>2018</risdate><volume>75</volume><issue>9</issue><spage>385</spage><epage>394</epage><pages>385-394</pages><issn>1949-3584</issn><eissn>1949-3592</eissn><abstract>Any cell within a tissue is constantly confronted with a variety of mechanical stimuli. Sensing of these diverse stimuli plays an important role in cellular regulation. Besides shear stress, cells of the vascular endothelium are particularly exposed to a permanent cyclic straining originating from the interplay of outwards pushing blood pressure and inwards acting contraction by smooth musculature. Perpendicular alignment of cells as structural adaptation to this condition is a basic prerequisite in order to withstand deformation forces. Here, we combine live cell approaches with immunocytochemical analyses on single cell level to closely elucidate the mechanisms of cytoskeletal realignment to cyclic strain and consolidate orientation analyses of actin fibres, microtubules (MTs) and vimentin. We could show that strain‐induced reorientation takes place for all cytoskeletal systems. However, all systems are characterized by their own, specific reorientation time course with actin filaments reorienting first followed by MTs and finally vimentin. Interestingly, in all cases, this reorientation was faster than cell body realignment which argues for an active adaptation mechanism for all cytoskeletal systems. Upon actin destabilization, already smallest alterations in actin kinetics massively hamper cell morphology under strain and therefore overall reorientation. Depolymerization of MTs just slightly influences actin reorientation velocity but strongly affects cell body reorientation.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>30176121</pmid><doi>10.1002/cm.21470</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1949-3584
ispartof Cytoskeleton (Hoboken, N.J.), 2018-09, Vol.75 (9), p.385-394
issn 1949-3584
1949-3592
language eng
recordid cdi_proquest_miscellaneous_2099042942
source Wiley Online Library All Journals
subjects Actin
Blood pressure
Cell body
Contraction
cyclic stretch
Cytology
cytoskeletal reorientation
Cytoskeleton
Depolymerization
Endothelium
Filaments
Intermediate filaments
Mechanical stimuli
mechanosensation
Microtubules
Vimentin
title Reorientation dynamics and structural interdependencies of actin, microtubules and intermediate filaments upon cyclic stretch application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reorientation%20dynamics%20and%20structural%20interdependencies%20of%20actin,%20microtubules%20and%20intermediate%20filaments%20upon%20cyclic%20stretch%20application&rft.jtitle=Cytoskeleton%20(Hoboken,%20N.J.)&rft.au=Zielinski,%20Alexander&rft.date=2018-09&rft.volume=75&rft.issue=9&rft.spage=385&rft.epage=394&rft.pages=385-394&rft.issn=1949-3584&rft.eissn=1949-3592&rft_id=info:doi/10.1002/cm.21470&rft_dat=%3Cproquest_cross%3E2137341300%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2137341300&rft_id=info:pmid/30176121&rfr_iscdi=true