Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature
In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-t...
Gespeichert in:
Veröffentlicht in: | Analytical Sciences 2018/12/10, Vol.34(12), pp.1385-1391 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1391 |
---|---|
container_issue | 12 |
container_start_page | 1385 |
container_title | Analytical Sciences |
container_volume | 34 |
creator | ZHANG, Yuan WANG, Jiaming ABUDUKEREMU, Hannikezi NIZAMIDIN, Patima ABLIZ, Shawket YIMIT, Abliz |
description | In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The gas-sensing characteristics of the fabricated sensors were studied at room temperature for various gases. The experimental results indicate that the sensor exhibited a high selective response toward SO2 and H2S and a low detection limit of 10 ppb to SO2 and H2S. The response/recovery times for SO2 and H2S were 2/23 and 2/18 s. However, during an electrochemical gas-sensing performance test of the SDBS-WO3 film at room temperature, the results indicated that the trend of the variation in resistance was consistent with the variation in the output light. |
doi_str_mv | 10.2116/analsci.18P226 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2099038918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099038918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-6da0a429698b1a952ba1649efb4a45ff1a4b1730bc445067718a32a8e13b1a263</originalsourceid><addsrcrecordid>eNp1kctrGzEQh0VJoU7aa88LveSyjl4rS8c8nAcEHOqUHMWsOuvK7K4cST7kv4-SDS4UetGA9H0z4jeEfGd0zhlTZzBCn5yfM_3AufpEZkxIXXMu1RGZUcNorYSkX8hxSltKGdecz8jTape9g75e9uhy9M7nl-oGUr3GMflxUz3EsMNYLq8wF8KHsQpdtb66WNdPK1Fd-36oIFc_QxiqRxwKC3kf8Sv53JXv4LePekJ-XS8fL2_r-9XN3eX5fe0apXKtfgMFyY0yumVgGt4CU9Jg10qQTdcxkC1bCNo6KRuqFgumQXDQyEThuRIn5HTqu4vheY8p28Enh30PI4Z9spwaQ4U2TBf0xz_oNuzjW2iWc0E1a4wShZpPlIshpYid3UU_QHyxjNq3nO1HznbKuQhnk5AKOG4w_m37X2M5GduUYYOHARDLKno84EJaxt_Pd-_w7v5AtDiKV9acmVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230815963</pqid></control><display><type>article</type><title>Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature</title><source>J-STAGE Free</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>SpringerLink Journals - AutoHoldings</source><creator>ZHANG, Yuan ; WANG, Jiaming ; ABUDUKEREMU, Hannikezi ; NIZAMIDIN, Patima ; ABLIZ, Shawket ; YIMIT, Abliz</creator><creatorcontrib>ZHANG, Yuan ; WANG, Jiaming ; ABUDUKEREMU, Hannikezi ; NIZAMIDIN, Patima ; ABLIZ, Shawket ; YIMIT, Abliz</creatorcontrib><description>In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The gas-sensing characteristics of the fabricated sensors were studied at room temperature for various gases. The experimental results indicate that the sensor exhibited a high selective response toward SO2 and H2S and a low detection limit of 10 ppb to SO2 and H2S. The response/recovery times for SO2 and H2S were 2/23 and 2/18 s. However, during an electrochemical gas-sensing performance test of the SDBS-WO3 film at room temperature, the results indicated that the trend of the variation in resistance was consistent with the variation in the output light.</description><identifier>ISSN: 0910-6340</identifier><identifier>EISSN: 1348-2246</identifier><identifier>DOI: 10.2116/analsci.18P226</identifier><language>eng</language><publisher>Singapore: The Japan Society for Analytical Chemistry</publisher><subject>Analytical Chemistry ; Benzene ; Chemistry ; Detection ; electrochemical gas sensor ; Electrochemistry ; Fourier transforms ; Gases ; H2S ; Hydrogen sulfide ; Infrared spectroscopy ; Nanoparticles ; Optical properties ; optical waveguide gas sensor ; Optical waveguides ; Performance tests ; Room temperature ; Scanning electron microscopy ; SO2 ; Sodium ; Sodium dodecylbenzenesulfonate ; Spin coating ; Sulfur dioxide ; Sulfur dioxide recovery ; Temperature effects ; Thin films ; Tin ; Tungsten oxides ; WO3 ; X-ray diffraction</subject><ispartof>Analytical Sciences, 2018/12/10, Vol.34(12), pp.1385-1391</ispartof><rights>2018 by The Japan Society for Analytical Chemistry</rights><rights>The Japan Society for Analytical Chemistry 2018</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-6da0a429698b1a952ba1649efb4a45ff1a4b1730bc445067718a32a8e13b1a263</citedby><cites>FETCH-LOGICAL-c566t-6da0a429698b1a952ba1649efb4a45ff1a4b1730bc445067718a32a8e13b1a263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.2116/analsci.18P226$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.2116/analsci.18P226$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,1881,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>ZHANG, Yuan</creatorcontrib><creatorcontrib>WANG, Jiaming</creatorcontrib><creatorcontrib>ABUDUKEREMU, Hannikezi</creatorcontrib><creatorcontrib>NIZAMIDIN, Patima</creatorcontrib><creatorcontrib>ABLIZ, Shawket</creatorcontrib><creatorcontrib>YIMIT, Abliz</creatorcontrib><title>Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature</title><title>Analytical Sciences</title><addtitle>ANAL. SCI</addtitle><description>In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The gas-sensing characteristics of the fabricated sensors were studied at room temperature for various gases. The experimental results indicate that the sensor exhibited a high selective response toward SO2 and H2S and a low detection limit of 10 ppb to SO2 and H2S. The response/recovery times for SO2 and H2S were 2/23 and 2/18 s. However, during an electrochemical gas-sensing performance test of the SDBS-WO3 film at room temperature, the results indicated that the trend of the variation in resistance was consistent with the variation in the output light.</description><subject>Analytical Chemistry</subject><subject>Benzene</subject><subject>Chemistry</subject><subject>Detection</subject><subject>electrochemical gas sensor</subject><subject>Electrochemistry</subject><subject>Fourier transforms</subject><subject>Gases</subject><subject>H2S</subject><subject>Hydrogen sulfide</subject><subject>Infrared spectroscopy</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>optical waveguide gas sensor</subject><subject>Optical waveguides</subject><subject>Performance tests</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>SO2</subject><subject>Sodium</subject><subject>Sodium dodecylbenzenesulfonate</subject><subject>Spin coating</subject><subject>Sulfur dioxide</subject><subject>Sulfur dioxide recovery</subject><subject>Temperature effects</subject><subject>Thin films</subject><subject>Tin</subject><subject>Tungsten oxides</subject><subject>WO3</subject><subject>X-ray diffraction</subject><issn>0910-6340</issn><issn>1348-2246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kctrGzEQh0VJoU7aa88LveSyjl4rS8c8nAcEHOqUHMWsOuvK7K4cST7kv4-SDS4UetGA9H0z4jeEfGd0zhlTZzBCn5yfM_3AufpEZkxIXXMu1RGZUcNorYSkX8hxSltKGdecz8jTape9g75e9uhy9M7nl-oGUr3GMflxUz3EsMNYLq8wF8KHsQpdtb66WNdPK1Fd-36oIFc_QxiqRxwKC3kf8Sv53JXv4LePekJ-XS8fL2_r-9XN3eX5fe0apXKtfgMFyY0yumVgGt4CU9Jg10qQTdcxkC1bCNo6KRuqFgumQXDQyEThuRIn5HTqu4vheY8p28Enh30PI4Z9spwaQ4U2TBf0xz_oNuzjW2iWc0E1a4wShZpPlIshpYid3UU_QHyxjNq3nO1HznbKuQhnk5AKOG4w_m37X2M5GduUYYOHARDLKno84EJaxt_Pd-_w7v5AtDiKV9acmVY</recordid><startdate>20181210</startdate><enddate>20181210</enddate><creator>ZHANG, Yuan</creator><creator>WANG, Jiaming</creator><creator>ABUDUKEREMU, Hannikezi</creator><creator>NIZAMIDIN, Patima</creator><creator>ABLIZ, Shawket</creator><creator>YIMIT, Abliz</creator><general>The Japan Society for Analytical Chemistry</general><general>Springer Nature Singapore</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20181210</creationdate><title>Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature</title><author>ZHANG, Yuan ; WANG, Jiaming ; ABUDUKEREMU, Hannikezi ; NIZAMIDIN, Patima ; ABLIZ, Shawket ; YIMIT, Abliz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-6da0a429698b1a952ba1649efb4a45ff1a4b1730bc445067718a32a8e13b1a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Benzene</topic><topic>Chemistry</topic><topic>Detection</topic><topic>electrochemical gas sensor</topic><topic>Electrochemistry</topic><topic>Fourier transforms</topic><topic>Gases</topic><topic>H2S</topic><topic>Hydrogen sulfide</topic><topic>Infrared spectroscopy</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>optical waveguide gas sensor</topic><topic>Optical waveguides</topic><topic>Performance tests</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>SO2</topic><topic>Sodium</topic><topic>Sodium dodecylbenzenesulfonate</topic><topic>Spin coating</topic><topic>Sulfur dioxide</topic><topic>Sulfur dioxide recovery</topic><topic>Temperature effects</topic><topic>Thin films</topic><topic>Tin</topic><topic>Tungsten oxides</topic><topic>WO3</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Yuan</creatorcontrib><creatorcontrib>WANG, Jiaming</creatorcontrib><creatorcontrib>ABUDUKEREMU, Hannikezi</creatorcontrib><creatorcontrib>NIZAMIDIN, Patima</creatorcontrib><creatorcontrib>ABLIZ, Shawket</creatorcontrib><creatorcontrib>YIMIT, Abliz</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Yuan</au><au>WANG, Jiaming</au><au>ABUDUKEREMU, Hannikezi</au><au>NIZAMIDIN, Patima</au><au>ABLIZ, Shawket</au><au>YIMIT, Abliz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature</atitle><jtitle>Analytical Sciences</jtitle><stitle>ANAL. SCI</stitle><date>2018-12-10</date><risdate>2018</risdate><volume>34</volume><issue>12</issue><spage>1385</spage><epage>1391</epage><pages>1385-1391</pages><issn>0910-6340</issn><eissn>1348-2246</eissn><abstract>In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The gas-sensing characteristics of the fabricated sensors were studied at room temperature for various gases. The experimental results indicate that the sensor exhibited a high selective response toward SO2 and H2S and a low detection limit of 10 ppb to SO2 and H2S. The response/recovery times for SO2 and H2S were 2/23 and 2/18 s. However, during an electrochemical gas-sensing performance test of the SDBS-WO3 film at room temperature, the results indicated that the trend of the variation in resistance was consistent with the variation in the output light.</abstract><cop>Singapore</cop><pub>The Japan Society for Analytical Chemistry</pub><doi>10.2116/analsci.18P226</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0910-6340 |
ispartof | Analytical Sciences, 2018/12/10, Vol.34(12), pp.1385-1391 |
issn | 0910-6340 1348-2246 |
language | eng |
recordid | cdi_proquest_miscellaneous_2099038918 |
source | J-STAGE Free; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Benzene Chemistry Detection electrochemical gas sensor Electrochemistry Fourier transforms Gases H2S Hydrogen sulfide Infrared spectroscopy Nanoparticles Optical properties optical waveguide gas sensor Optical waveguides Performance tests Room temperature Scanning electron microscopy SO2 Sodium Sodium dodecylbenzenesulfonate Spin coating Sulfur dioxide Sulfur dioxide recovery Temperature effects Thin films Tin Tungsten oxides WO3 X-ray diffraction |
title | Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical-Electricity%20Gas-Sensing%20Property%20Detection%20of%20SDBS-WO3%20Film%20at%20Room%20Temperature&rft.jtitle=Analytical%20Sciences&rft.au=ZHANG,%20Yuan&rft.date=2018-12-10&rft.volume=34&rft.issue=12&rft.spage=1385&rft.epage=1391&rft.pages=1385-1391&rft.issn=0910-6340&rft.eissn=1348-2246&rft_id=info:doi/10.2116/analsci.18P226&rft_dat=%3Cproquest_cross%3E2099038918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230815963&rft_id=info:pmid/&rfr_iscdi=true |