Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature

In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical Sciences 2018/12/10, Vol.34(12), pp.1385-1391
Hauptverfasser: ZHANG, Yuan, WANG, Jiaming, ABUDUKEREMU, Hannikezi, NIZAMIDIN, Patima, ABLIZ, Shawket, YIMIT, Abliz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1391
container_issue 12
container_start_page 1385
container_title Analytical Sciences
container_volume 34
creator ZHANG, Yuan
WANG, Jiaming
ABUDUKEREMU, Hannikezi
NIZAMIDIN, Patima
ABLIZ, Shawket
YIMIT, Abliz
description In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The gas-sensing characteristics of the fabricated sensors were studied at room temperature for various gases. The experimental results indicate that the sensor exhibited a high selective response toward SO2 and H2S and a low detection limit of 10 ppb to SO2 and H2S. The response/recovery times for SO2 and H2S were 2/23 and 2/18 s. However, during an electrochemical gas-sensing performance test of the SDBS-WO3 film at room temperature, the results indicated that the trend of the variation in resistance was consistent with the variation in the output light.
doi_str_mv 10.2116/analsci.18P226
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2099038918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099038918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c566t-6da0a429698b1a952ba1649efb4a45ff1a4b1730bc445067718a32a8e13b1a263</originalsourceid><addsrcrecordid>eNp1kctrGzEQh0VJoU7aa88LveSyjl4rS8c8nAcEHOqUHMWsOuvK7K4cST7kv4-SDS4UetGA9H0z4jeEfGd0zhlTZzBCn5yfM_3AufpEZkxIXXMu1RGZUcNorYSkX8hxSltKGdecz8jTape9g75e9uhy9M7nl-oGUr3GMflxUz3EsMNYLq8wF8KHsQpdtb66WNdPK1Fd-36oIFc_QxiqRxwKC3kf8Sv53JXv4LePekJ-XS8fL2_r-9XN3eX5fe0apXKtfgMFyY0yumVgGt4CU9Jg10qQTdcxkC1bCNo6KRuqFgumQXDQyEThuRIn5HTqu4vheY8p28Enh30PI4Z9spwaQ4U2TBf0xz_oNuzjW2iWc0E1a4wShZpPlIshpYid3UU_QHyxjNq3nO1HznbKuQhnk5AKOG4w_m37X2M5GduUYYOHARDLKno84EJaxt_Pd-_w7v5AtDiKV9acmVY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230815963</pqid></control><display><type>article</type><title>Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature</title><source>J-STAGE Free</source><source>Open Access Titles of Japan</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><source>SpringerLink Journals - AutoHoldings</source><creator>ZHANG, Yuan ; WANG, Jiaming ; ABUDUKEREMU, Hannikezi ; NIZAMIDIN, Patima ; ABLIZ, Shawket ; YIMIT, Abliz</creator><creatorcontrib>ZHANG, Yuan ; WANG, Jiaming ; ABUDUKEREMU, Hannikezi ; NIZAMIDIN, Patima ; ABLIZ, Shawket ; YIMIT, Abliz</creatorcontrib><description>In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The gas-sensing characteristics of the fabricated sensors were studied at room temperature for various gases. The experimental results indicate that the sensor exhibited a high selective response toward SO2 and H2S and a low detection limit of 10 ppb to SO2 and H2S. The response/recovery times for SO2 and H2S were 2/23 and 2/18 s. However, during an electrochemical gas-sensing performance test of the SDBS-WO3 film at room temperature, the results indicated that the trend of the variation in resistance was consistent with the variation in the output light.</description><identifier>ISSN: 0910-6340</identifier><identifier>EISSN: 1348-2246</identifier><identifier>DOI: 10.2116/analsci.18P226</identifier><language>eng</language><publisher>Singapore: The Japan Society for Analytical Chemistry</publisher><subject>Analytical Chemistry ; Benzene ; Chemistry ; Detection ; electrochemical gas sensor ; Electrochemistry ; Fourier transforms ; Gases ; H2S ; Hydrogen sulfide ; Infrared spectroscopy ; Nanoparticles ; Optical properties ; optical waveguide gas sensor ; Optical waveguides ; Performance tests ; Room temperature ; Scanning electron microscopy ; SO2 ; Sodium ; Sodium dodecylbenzenesulfonate ; Spin coating ; Sulfur dioxide ; Sulfur dioxide recovery ; Temperature effects ; Thin films ; Tin ; Tungsten oxides ; WO3 ; X-ray diffraction</subject><ispartof>Analytical Sciences, 2018/12/10, Vol.34(12), pp.1385-1391</ispartof><rights>2018 by The Japan Society for Analytical Chemistry</rights><rights>The Japan Society for Analytical Chemistry 2018</rights><rights>Copyright Japan Science and Technology Agency 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c566t-6da0a429698b1a952ba1649efb4a45ff1a4b1730bc445067718a32a8e13b1a263</citedby><cites>FETCH-LOGICAL-c566t-6da0a429698b1a952ba1649efb4a45ff1a4b1730bc445067718a32a8e13b1a263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.2116/analsci.18P226$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.2116/analsci.18P226$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,1881,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>ZHANG, Yuan</creatorcontrib><creatorcontrib>WANG, Jiaming</creatorcontrib><creatorcontrib>ABUDUKEREMU, Hannikezi</creatorcontrib><creatorcontrib>NIZAMIDIN, Patima</creatorcontrib><creatorcontrib>ABLIZ, Shawket</creatorcontrib><creatorcontrib>YIMIT, Abliz</creatorcontrib><title>Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature</title><title>Analytical Sciences</title><addtitle>ANAL. SCI</addtitle><description>In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The gas-sensing characteristics of the fabricated sensors were studied at room temperature for various gases. The experimental results indicate that the sensor exhibited a high selective response toward SO2 and H2S and a low detection limit of 10 ppb to SO2 and H2S. The response/recovery times for SO2 and H2S were 2/23 and 2/18 s. However, during an electrochemical gas-sensing performance test of the SDBS-WO3 film at room temperature, the results indicated that the trend of the variation in resistance was consistent with the variation in the output light.</description><subject>Analytical Chemistry</subject><subject>Benzene</subject><subject>Chemistry</subject><subject>Detection</subject><subject>electrochemical gas sensor</subject><subject>Electrochemistry</subject><subject>Fourier transforms</subject><subject>Gases</subject><subject>H2S</subject><subject>Hydrogen sulfide</subject><subject>Infrared spectroscopy</subject><subject>Nanoparticles</subject><subject>Optical properties</subject><subject>optical waveguide gas sensor</subject><subject>Optical waveguides</subject><subject>Performance tests</subject><subject>Room temperature</subject><subject>Scanning electron microscopy</subject><subject>SO2</subject><subject>Sodium</subject><subject>Sodium dodecylbenzenesulfonate</subject><subject>Spin coating</subject><subject>Sulfur dioxide</subject><subject>Sulfur dioxide recovery</subject><subject>Temperature effects</subject><subject>Thin films</subject><subject>Tin</subject><subject>Tungsten oxides</subject><subject>WO3</subject><subject>X-ray diffraction</subject><issn>0910-6340</issn><issn>1348-2246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kctrGzEQh0VJoU7aa88LveSyjl4rS8c8nAcEHOqUHMWsOuvK7K4cST7kv4-SDS4UetGA9H0z4jeEfGd0zhlTZzBCn5yfM_3AufpEZkxIXXMu1RGZUcNorYSkX8hxSltKGdecz8jTape9g75e9uhy9M7nl-oGUr3GMflxUz3EsMNYLq8wF8KHsQpdtb66WNdPK1Fd-36oIFc_QxiqRxwKC3kf8Sv53JXv4LePekJ-XS8fL2_r-9XN3eX5fe0apXKtfgMFyY0yumVgGt4CU9Jg10qQTdcxkC1bCNo6KRuqFgumQXDQyEThuRIn5HTqu4vheY8p28Enh30PI4Z9spwaQ4U2TBf0xz_oNuzjW2iWc0E1a4wShZpPlIshpYid3UU_QHyxjNq3nO1HznbKuQhnk5AKOG4w_m37X2M5GduUYYOHARDLKno84EJaxt_Pd-_w7v5AtDiKV9acmVY</recordid><startdate>20181210</startdate><enddate>20181210</enddate><creator>ZHANG, Yuan</creator><creator>WANG, Jiaming</creator><creator>ABUDUKEREMU, Hannikezi</creator><creator>NIZAMIDIN, Patima</creator><creator>ABLIZ, Shawket</creator><creator>YIMIT, Abliz</creator><general>The Japan Society for Analytical Chemistry</general><general>Springer Nature Singapore</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20181210</creationdate><title>Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature</title><author>ZHANG, Yuan ; WANG, Jiaming ; ABUDUKEREMU, Hannikezi ; NIZAMIDIN, Patima ; ABLIZ, Shawket ; YIMIT, Abliz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c566t-6da0a429698b1a952ba1649efb4a45ff1a4b1730bc445067718a32a8e13b1a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Benzene</topic><topic>Chemistry</topic><topic>Detection</topic><topic>electrochemical gas sensor</topic><topic>Electrochemistry</topic><topic>Fourier transforms</topic><topic>Gases</topic><topic>H2S</topic><topic>Hydrogen sulfide</topic><topic>Infrared spectroscopy</topic><topic>Nanoparticles</topic><topic>Optical properties</topic><topic>optical waveguide gas sensor</topic><topic>Optical waveguides</topic><topic>Performance tests</topic><topic>Room temperature</topic><topic>Scanning electron microscopy</topic><topic>SO2</topic><topic>Sodium</topic><topic>Sodium dodecylbenzenesulfonate</topic><topic>Spin coating</topic><topic>Sulfur dioxide</topic><topic>Sulfur dioxide recovery</topic><topic>Temperature effects</topic><topic>Thin films</topic><topic>Tin</topic><topic>Tungsten oxides</topic><topic>WO3</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZHANG, Yuan</creatorcontrib><creatorcontrib>WANG, Jiaming</creatorcontrib><creatorcontrib>ABUDUKEREMU, Hannikezi</creatorcontrib><creatorcontrib>NIZAMIDIN, Patima</creatorcontrib><creatorcontrib>ABLIZ, Shawket</creatorcontrib><creatorcontrib>YIMIT, Abliz</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHANG, Yuan</au><au>WANG, Jiaming</au><au>ABUDUKEREMU, Hannikezi</au><au>NIZAMIDIN, Patima</au><au>ABLIZ, Shawket</au><au>YIMIT, Abliz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature</atitle><jtitle>Analytical Sciences</jtitle><stitle>ANAL. SCI</stitle><date>2018-12-10</date><risdate>2018</risdate><volume>34</volume><issue>12</issue><spage>1385</spage><epage>1391</epage><pages>1385-1391</pages><issn>0910-6340</issn><eissn>1348-2246</eissn><abstract>In this work, sodium dodecyl benzene sulfonate (SDBS) was used as a dispersing agent; a WO3 nanoparticle suspension was used as a sensing material. The SDBS-WO3 thin film/Sn-doped glass optical waveguide sensor element was prepared by spin coating. The sensing material was characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The gas-sensing characteristics of the fabricated sensors were studied at room temperature for various gases. The experimental results indicate that the sensor exhibited a high selective response toward SO2 and H2S and a low detection limit of 10 ppb to SO2 and H2S. The response/recovery times for SO2 and H2S were 2/23 and 2/18 s. However, during an electrochemical gas-sensing performance test of the SDBS-WO3 film at room temperature, the results indicated that the trend of the variation in resistance was consistent with the variation in the output light.</abstract><cop>Singapore</cop><pub>The Japan Society for Analytical Chemistry</pub><doi>10.2116/analsci.18P226</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0910-6340
ispartof Analytical Sciences, 2018/12/10, Vol.34(12), pp.1385-1391
issn 0910-6340
1348-2246
language eng
recordid cdi_proquest_miscellaneous_2099038918
source J-STAGE Free; Open Access Titles of Japan; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry; SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Benzene
Chemistry
Detection
electrochemical gas sensor
Electrochemistry
Fourier transforms
Gases
H2S
Hydrogen sulfide
Infrared spectroscopy
Nanoparticles
Optical properties
optical waveguide gas sensor
Optical waveguides
Performance tests
Room temperature
Scanning electron microscopy
SO2
Sodium
Sodium dodecylbenzenesulfonate
Spin coating
Sulfur dioxide
Sulfur dioxide recovery
Temperature effects
Thin films
Tin
Tungsten oxides
WO3
X-ray diffraction
title Optical-Electricity Gas-Sensing Property Detection of SDBS-WO3 Film at Room Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical-Electricity%20Gas-Sensing%20Property%20Detection%20of%20SDBS-WO3%20Film%20at%20Room%20Temperature&rft.jtitle=Analytical%20Sciences&rft.au=ZHANG,%20Yuan&rft.date=2018-12-10&rft.volume=34&rft.issue=12&rft.spage=1385&rft.epage=1391&rft.pages=1385-1391&rft.issn=0910-6340&rft.eissn=1348-2246&rft_id=info:doi/10.2116/analsci.18P226&rft_dat=%3Cproquest_cross%3E2099038918%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230815963&rft_id=info:pmid/&rfr_iscdi=true