Cloud droplet activation of saccharides and levoglucosan particles

This study is focused on the ability of water-soluble organic compounds from wood combustion to act as cloud condensation nuclei. In particular, we have studied glucose, fructose, and mannose (monosaccharides), lactose, maltose, and sucrose (disaccharides) and levoglucosan. Critical supersaturations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2006-03, Vol.40 (10), p.1794-1802
Hauptverfasser: Rosenørn, Thomas, Kiss, Gyula, Bilde, Merete
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1802
container_issue 10
container_start_page 1794
container_title Atmospheric environment (1994)
container_volume 40
creator Rosenørn, Thomas
Kiss, Gyula
Bilde, Merete
description This study is focused on the ability of water-soluble organic compounds from wood combustion to act as cloud condensation nuclei. In particular, we have studied glucose, fructose, and mannose (monosaccharides), lactose, maltose, and sucrose (disaccharides) and levoglucosan. Critical supersaturations for dry particle sizes in the range 40–150 nm were measured using a static thermal diffusion cloud condensation nucleus counter. For glucose and sucrose, critical supersaturations were calculated by applying Köhler theory in three different ways: using water activities from literature, using water activity calculated assuming a van’t Hoff factor of 1, and using osmolality-derived water activity values. Critical supersaturations for the other compounds were calculated using water activity calculated assuming a van’t Hoff factor of 1 and with osmolality-derived water activities (except for mannose and Levoglucosan). Calculated critical supersaturations agreed well with experimental data in all cases. For particles of the same size, the disaccharides (lactose, maltose and sucrose) were found to activate at a significantly higher critical supersaturations than the monosaccharides and levoglucosan. This is consistent with Köhler theory and is due to the higher molar mass of the disaccharides.
doi_str_mv 10.1016/j.atmosenv.2005.11.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20990012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1352231005010873</els_id><sourcerecordid>20990012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-dcf6966bf7dda75759d92f26f0707e22742d69498a10c2c45287d043f3aed0453</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhCMEEuXxF1AucEtY20lc34CKl1SJC5ytxV6DKzcudlqJf0-qFnHkNHuY2dn9iuKCQc2AddeLGodlzNRvag7Q1ozVwJuDYsKmUlR82jSH4yxaXnHB4Lg4yXkBAEIqOSnuZiGubWlTXAUaSjSD3-DgY19GV2Y05hOTt5RL7G0ZaBM_wtrEjH25wjR4EyifFUcOQ6bzvZ4Wbw_3r7Onav7y-Dy7nVdGSDFU1rhOdd27k9aibGWrrOKOdw4kSOJcNtx2qlFTZGC4aVo-lRYa4QTSqK04La52e1cpfq0pD3rps6EQsKe4zpqDUgCMj8ZuZzQp5pzI6VXyS0zfmoHeItML_YtMb5FpxvSIbAxe7hswGwwuYW98_kuPN6u2k6PvZuej8d2Np6Sz8dQbsj6RGbSN_r-qH667hZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20990012</pqid></control><display><type>article</type><title>Cloud droplet activation of saccharides and levoglucosan particles</title><source>Elsevier ScienceDirect Journals</source><creator>Rosenørn, Thomas ; Kiss, Gyula ; Bilde, Merete</creator><creatorcontrib>Rosenørn, Thomas ; Kiss, Gyula ; Bilde, Merete</creatorcontrib><description>This study is focused on the ability of water-soluble organic compounds from wood combustion to act as cloud condensation nuclei. In particular, we have studied glucose, fructose, and mannose (monosaccharides), lactose, maltose, and sucrose (disaccharides) and levoglucosan. Critical supersaturations for dry particle sizes in the range 40–150 nm were measured using a static thermal diffusion cloud condensation nucleus counter. For glucose and sucrose, critical supersaturations were calculated by applying Köhler theory in three different ways: using water activities from literature, using water activity calculated assuming a van’t Hoff factor of 1, and using osmolality-derived water activity values. Critical supersaturations for the other compounds were calculated using water activity calculated assuming a van’t Hoff factor of 1 and with osmolality-derived water activities (except for mannose and Levoglucosan). Calculated critical supersaturations agreed well with experimental data in all cases. For particles of the same size, the disaccharides (lactose, maltose and sucrose) were found to activate at a significantly higher critical supersaturations than the monosaccharides and levoglucosan. This is consistent with Köhler theory and is due to the higher molar mass of the disaccharides.</description><identifier>ISSN: 1352-2310</identifier><identifier>EISSN: 1873-2844</identifier><identifier>DOI: 10.1016/j.atmosenv.2005.11.024</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aerosol ; CCN ; Cloud physics ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Fructose ; Glucose ; Lactose ; Levoglucosan ; Maltose ; Mannose ; Meteorology ; Particles and aerosols ; Sucrose ; Water-soluble organic compounds</subject><ispartof>Atmospheric environment (1994), 2006-03, Vol.40 (10), p.1794-1802</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-dcf6966bf7dda75759d92f26f0707e22742d69498a10c2c45287d043f3aed0453</citedby><cites>FETCH-LOGICAL-c373t-dcf6966bf7dda75759d92f26f0707e22742d69498a10c2c45287d043f3aed0453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1352231005010873$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17599567$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenørn, Thomas</creatorcontrib><creatorcontrib>Kiss, Gyula</creatorcontrib><creatorcontrib>Bilde, Merete</creatorcontrib><title>Cloud droplet activation of saccharides and levoglucosan particles</title><title>Atmospheric environment (1994)</title><description>This study is focused on the ability of water-soluble organic compounds from wood combustion to act as cloud condensation nuclei. In particular, we have studied glucose, fructose, and mannose (monosaccharides), lactose, maltose, and sucrose (disaccharides) and levoglucosan. Critical supersaturations for dry particle sizes in the range 40–150 nm were measured using a static thermal diffusion cloud condensation nucleus counter. For glucose and sucrose, critical supersaturations were calculated by applying Köhler theory in three different ways: using water activities from literature, using water activity calculated assuming a van’t Hoff factor of 1, and using osmolality-derived water activity values. Critical supersaturations for the other compounds were calculated using water activity calculated assuming a van’t Hoff factor of 1 and with osmolality-derived water activities (except for mannose and Levoglucosan). Calculated critical supersaturations agreed well with experimental data in all cases. For particles of the same size, the disaccharides (lactose, maltose and sucrose) were found to activate at a significantly higher critical supersaturations than the monosaccharides and levoglucosan. This is consistent with Köhler theory and is due to the higher molar mass of the disaccharides.</description><subject>Aerosol</subject><subject>CCN</subject><subject>Cloud physics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Fructose</subject><subject>Glucose</subject><subject>Lactose</subject><subject>Levoglucosan</subject><subject>Maltose</subject><subject>Mannose</subject><subject>Meteorology</subject><subject>Particles and aerosols</subject><subject>Sucrose</subject><subject>Water-soluble organic compounds</subject><issn>1352-2310</issn><issn>1873-2844</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhCMEEuXxF1AucEtY20lc34CKl1SJC5ytxV6DKzcudlqJf0-qFnHkNHuY2dn9iuKCQc2AddeLGodlzNRvag7Q1ozVwJuDYsKmUlR82jSH4yxaXnHB4Lg4yXkBAEIqOSnuZiGubWlTXAUaSjSD3-DgY19GV2Y05hOTt5RL7G0ZaBM_wtrEjH25wjR4EyifFUcOQ6bzvZ4Wbw_3r7Onav7y-Dy7nVdGSDFU1rhOdd27k9aibGWrrOKOdw4kSOJcNtx2qlFTZGC4aVo-lRYa4QTSqK04La52e1cpfq0pD3rps6EQsKe4zpqDUgCMj8ZuZzQp5pzI6VXyS0zfmoHeItML_YtMb5FpxvSIbAxe7hswGwwuYW98_kuPN6u2k6PvZuej8d2Np6Sz8dQbsj6RGbSN_r-qH667hZ0</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Rosenørn, Thomas</creator><creator>Kiss, Gyula</creator><creator>Bilde, Merete</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20060301</creationdate><title>Cloud droplet activation of saccharides and levoglucosan particles</title><author>Rosenørn, Thomas ; Kiss, Gyula ; Bilde, Merete</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-dcf6966bf7dda75759d92f26f0707e22742d69498a10c2c45287d043f3aed0453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aerosol</topic><topic>CCN</topic><topic>Cloud physics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Fructose</topic><topic>Glucose</topic><topic>Lactose</topic><topic>Levoglucosan</topic><topic>Maltose</topic><topic>Mannose</topic><topic>Meteorology</topic><topic>Particles and aerosols</topic><topic>Sucrose</topic><topic>Water-soluble organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenørn, Thomas</creatorcontrib><creatorcontrib>Kiss, Gyula</creatorcontrib><creatorcontrib>Bilde, Merete</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Atmospheric environment (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenørn, Thomas</au><au>Kiss, Gyula</au><au>Bilde, Merete</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud droplet activation of saccharides and levoglucosan particles</atitle><jtitle>Atmospheric environment (1994)</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>40</volume><issue>10</issue><spage>1794</spage><epage>1802</epage><pages>1794-1802</pages><issn>1352-2310</issn><eissn>1873-2844</eissn><abstract>This study is focused on the ability of water-soluble organic compounds from wood combustion to act as cloud condensation nuclei. In particular, we have studied glucose, fructose, and mannose (monosaccharides), lactose, maltose, and sucrose (disaccharides) and levoglucosan. Critical supersaturations for dry particle sizes in the range 40–150 nm were measured using a static thermal diffusion cloud condensation nucleus counter. For glucose and sucrose, critical supersaturations were calculated by applying Köhler theory in three different ways: using water activities from literature, using water activity calculated assuming a van’t Hoff factor of 1, and using osmolality-derived water activity values. Critical supersaturations for the other compounds were calculated using water activity calculated assuming a van’t Hoff factor of 1 and with osmolality-derived water activities (except for mannose and Levoglucosan). Calculated critical supersaturations agreed well with experimental data in all cases. For particles of the same size, the disaccharides (lactose, maltose and sucrose) were found to activate at a significantly higher critical supersaturations than the monosaccharides and levoglucosan. This is consistent with Köhler theory and is due to the higher molar mass of the disaccharides.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.atmosenv.2005.11.024</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1352-2310
ispartof Atmospheric environment (1994), 2006-03, Vol.40 (10), p.1794-1802
issn 1352-2310
1873-2844
language eng
recordid cdi_proquest_miscellaneous_20990012
source Elsevier ScienceDirect Journals
subjects Aerosol
CCN
Cloud physics
Earth, ocean, space
Exact sciences and technology
External geophysics
Fructose
Glucose
Lactose
Levoglucosan
Maltose
Mannose
Meteorology
Particles and aerosols
Sucrose
Water-soluble organic compounds
title Cloud droplet activation of saccharides and levoglucosan particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud%20droplet%20activation%20of%20saccharides%20and%20levoglucosan%20particles&rft.jtitle=Atmospheric%20environment%20(1994)&rft.au=Rosen%C3%B8rn,%20Thomas&rft.date=2006-03-01&rft.volume=40&rft.issue=10&rft.spage=1794&rft.epage=1802&rft.pages=1794-1802&rft.issn=1352-2310&rft.eissn=1873-2844&rft_id=info:doi/10.1016/j.atmosenv.2005.11.024&rft_dat=%3Cproquest_cross%3E20990012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20990012&rft_id=info:pmid/&rft_els_id=S1352231005010873&rfr_iscdi=true