Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst
An electrochemical approach is developed that allows for the control of both proton and electron transfer rates in the O2 reduction reaction (ORR). A dinuclear Cu ORR catalyst was prepared that can be covalently attached to thiol‐based self‐assembled monolayers (SAMs) on Au electrodes using azide–al...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2018-10, Vol.57 (41), p.13480-13483 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13483 |
---|---|
container_issue | 41 |
container_start_page | 13480 |
container_title | Angewandte Chemie International Edition |
container_volume | 57 |
creator | Gautam, Rajendra P. Lee, Yi Teng Herman, Gabriel L. Moreno, Cynthia M. Tse, Edmund C. M. Barile, Christopher J. |
description | An electrochemical approach is developed that allows for the control of both proton and electron transfer rates in the O2 reduction reaction (ORR). A dinuclear Cu ORR catalyst was prepared that can be covalently attached to thiol‐based self‐assembled monolayers (SAMs) on Au electrodes using azide–alkyne click chemistry. Using this architecture, the electron transfer rate to the catalyst is modulated by changing the length of the SAM, and the proton transfer rate to the catalyst is controlled with an appended lipid membrane modified with proton carriers. By tuning the relative rates of proton and electron transfer, the current density of the lipid‐covered catalyst is enhanced without altering its core molecular structure. This electrochemical platform will help identify optimal thermodynamic and kinetic parameters for ORR catalysts and catalysts of other reactions that involve the transfer of both protons and electrons.
An electrochemical approach is developed to control both proton and electron transfer rates in the O2 reduction reaction. The electron transfer rate is modulated by changing the length of the self‐assembled monolayer, and the proton transfer rate by a modified lipid membrane. By tuning the relative proton and electron transfer rates, the current density is enhanced without altering its core molecular structure. |
doi_str_mv | 10.1002/anie.201806795 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2098769034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2115980706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-36734fe2024cfcf00abe6ad1486480a85d122f74c01112ca9e202441005938663</originalsourceid><addsrcrecordid>eNqFkc9LHDEYhkOpVGt77VECvfQya35Nkjkuy9oKUmVZzyFmvtGR2USTjDr_fbPdrQUvnhKS5334-F6EvlEyo4SwU-t7mDFCNZGqqT-gI1ozWnGl-MdyF5xXStf0EH1O6b7wunCf0CEnVFGl5RHaLILPMQxD72_xVQw5eGx9i5cDuPLu8TpanzqIeGUzJJwDXvo76x3gfAd47nL_1OcJh67E8OXLdAser6Ady0dJ7zXOZjtMKX9BB50dEnzdn8fo-my5XvyqLi5_ni_mF5UTStYVl4qLDhhhwnWuI8TegLQtFVoKTayuW8pYp4QjlFLmbPMXFWUhdcO1lPwY_dh5H2J4HCFls-mTg2GwHsKYDCONVrIhXBT0-xv0PozRl-kMo7RuNFFkK5ztKBdDShE68xD7jY2TocRsizDbIsxrESVwsteONxtoX_F_my9AswOe-wGmd3Rm_vt8-V_-B8gik88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2115980706</pqid></control><display><type>article</type><title>Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst</title><source>Wiley Online Library All Journals</source><creator>Gautam, Rajendra P. ; Lee, Yi Teng ; Herman, Gabriel L. ; Moreno, Cynthia M. ; Tse, Edmund C. M. ; Barile, Christopher J.</creator><creatorcontrib>Gautam, Rajendra P. ; Lee, Yi Teng ; Herman, Gabriel L. ; Moreno, Cynthia M. ; Tse, Edmund C. M. ; Barile, Christopher J.</creatorcontrib><description>An electrochemical approach is developed that allows for the control of both proton and electron transfer rates in the O2 reduction reaction (ORR). A dinuclear Cu ORR catalyst was prepared that can be covalently attached to thiol‐based self‐assembled monolayers (SAMs) on Au electrodes using azide–alkyne click chemistry. Using this architecture, the electron transfer rate to the catalyst is modulated by changing the length of the SAM, and the proton transfer rate to the catalyst is controlled with an appended lipid membrane modified with proton carriers. By tuning the relative rates of proton and electron transfer, the current density of the lipid‐covered catalyst is enhanced without altering its core molecular structure. This electrochemical platform will help identify optimal thermodynamic and kinetic parameters for ORR catalysts and catalysts of other reactions that involve the transfer of both protons and electrons.
An electrochemical approach is developed to control both proton and electron transfer rates in the O2 reduction reaction. The electron transfer rate is modulated by changing the length of the self‐assembled monolayer, and the proton transfer rate by a modified lipid membrane. By tuning the relative proton and electron transfer rates, the current density is enhanced without altering its core molecular structure.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201806795</identifier><identifier>PMID: 30171786</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alkynes ; Catalysis ; Catalysts ; Chemical reduction ; Chemical synthesis ; electrocatalysis ; Electrochemistry ; Electron transfer ; Electrons ; Gold ; Lipids ; Molecular structure ; Organic chemistry ; oxygen reduction ; Oxygen reduction reactions ; Parameter identification ; proton and electron transfer ; Protons ; self-assembled monolayers ; voltammetry</subject><ispartof>Angewandte Chemie International Edition, 2018-10, Vol.57 (41), p.13480-13483</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-36734fe2024cfcf00abe6ad1486480a85d122f74c01112ca9e202441005938663</citedby><cites>FETCH-LOGICAL-c4765-36734fe2024cfcf00abe6ad1486480a85d122f74c01112ca9e202441005938663</cites><orcidid>0000-0002-4893-9506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201806795$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201806795$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30171786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gautam, Rajendra P.</creatorcontrib><creatorcontrib>Lee, Yi Teng</creatorcontrib><creatorcontrib>Herman, Gabriel L.</creatorcontrib><creatorcontrib>Moreno, Cynthia M.</creatorcontrib><creatorcontrib>Tse, Edmund C. M.</creatorcontrib><creatorcontrib>Barile, Christopher J.</creatorcontrib><title>Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>An electrochemical approach is developed that allows for the control of both proton and electron transfer rates in the O2 reduction reaction (ORR). A dinuclear Cu ORR catalyst was prepared that can be covalently attached to thiol‐based self‐assembled monolayers (SAMs) on Au electrodes using azide–alkyne click chemistry. Using this architecture, the electron transfer rate to the catalyst is modulated by changing the length of the SAM, and the proton transfer rate to the catalyst is controlled with an appended lipid membrane modified with proton carriers. By tuning the relative rates of proton and electron transfer, the current density of the lipid‐covered catalyst is enhanced without altering its core molecular structure. This electrochemical platform will help identify optimal thermodynamic and kinetic parameters for ORR catalysts and catalysts of other reactions that involve the transfer of both protons and electrons.
An electrochemical approach is developed to control both proton and electron transfer rates in the O2 reduction reaction. The electron transfer rate is modulated by changing the length of the self‐assembled monolayer, and the proton transfer rate by a modified lipid membrane. By tuning the relative proton and electron transfer rates, the current density is enhanced without altering its core molecular structure.</description><subject>Alkynes</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>electrocatalysis</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Electrons</subject><subject>Gold</subject><subject>Lipids</subject><subject>Molecular structure</subject><subject>Organic chemistry</subject><subject>oxygen reduction</subject><subject>Oxygen reduction reactions</subject><subject>Parameter identification</subject><subject>proton and electron transfer</subject><subject>Protons</subject><subject>self-assembled monolayers</subject><subject>voltammetry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9LHDEYhkOpVGt77VECvfQya35Nkjkuy9oKUmVZzyFmvtGR2USTjDr_fbPdrQUvnhKS5334-F6EvlEyo4SwU-t7mDFCNZGqqT-gI1ozWnGl-MdyF5xXStf0EH1O6b7wunCf0CEnVFGl5RHaLILPMQxD72_xVQw5eGx9i5cDuPLu8TpanzqIeGUzJJwDXvo76x3gfAd47nL_1OcJh67E8OXLdAser6Ady0dJ7zXOZjtMKX9BB50dEnzdn8fo-my5XvyqLi5_ni_mF5UTStYVl4qLDhhhwnWuI8TegLQtFVoKTayuW8pYp4QjlFLmbPMXFWUhdcO1lPwY_dh5H2J4HCFls-mTg2GwHsKYDCONVrIhXBT0-xv0PozRl-kMo7RuNFFkK5ztKBdDShE68xD7jY2TocRsizDbIsxrESVwsteONxtoX_F_my9AswOe-wGmd3Rm_vt8-V_-B8gik88</recordid><startdate>20181008</startdate><enddate>20181008</enddate><creator>Gautam, Rajendra P.</creator><creator>Lee, Yi Teng</creator><creator>Herman, Gabriel L.</creator><creator>Moreno, Cynthia M.</creator><creator>Tse, Edmund C. M.</creator><creator>Barile, Christopher J.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4893-9506</orcidid></search><sort><creationdate>20181008</creationdate><title>Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst</title><author>Gautam, Rajendra P. ; Lee, Yi Teng ; Herman, Gabriel L. ; Moreno, Cynthia M. ; Tse, Edmund C. M. ; Barile, Christopher J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-36734fe2024cfcf00abe6ad1486480a85d122f74c01112ca9e202441005938663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alkynes</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>electrocatalysis</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Electrons</topic><topic>Gold</topic><topic>Lipids</topic><topic>Molecular structure</topic><topic>Organic chemistry</topic><topic>oxygen reduction</topic><topic>Oxygen reduction reactions</topic><topic>Parameter identification</topic><topic>proton and electron transfer</topic><topic>Protons</topic><topic>self-assembled monolayers</topic><topic>voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gautam, Rajendra P.</creatorcontrib><creatorcontrib>Lee, Yi Teng</creatorcontrib><creatorcontrib>Herman, Gabriel L.</creatorcontrib><creatorcontrib>Moreno, Cynthia M.</creatorcontrib><creatorcontrib>Tse, Edmund C. M.</creatorcontrib><creatorcontrib>Barile, Christopher J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gautam, Rajendra P.</au><au>Lee, Yi Teng</au><au>Herman, Gabriel L.</au><au>Moreno, Cynthia M.</au><au>Tse, Edmund C. M.</au><au>Barile, Christopher J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-10-08</date><risdate>2018</risdate><volume>57</volume><issue>41</issue><spage>13480</spage><epage>13483</epage><pages>13480-13483</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>An electrochemical approach is developed that allows for the control of both proton and electron transfer rates in the O2 reduction reaction (ORR). A dinuclear Cu ORR catalyst was prepared that can be covalently attached to thiol‐based self‐assembled monolayers (SAMs) on Au electrodes using azide–alkyne click chemistry. Using this architecture, the electron transfer rate to the catalyst is modulated by changing the length of the SAM, and the proton transfer rate to the catalyst is controlled with an appended lipid membrane modified with proton carriers. By tuning the relative rates of proton and electron transfer, the current density of the lipid‐covered catalyst is enhanced without altering its core molecular structure. This electrochemical platform will help identify optimal thermodynamic and kinetic parameters for ORR catalysts and catalysts of other reactions that involve the transfer of both protons and electrons.
An electrochemical approach is developed to control both proton and electron transfer rates in the O2 reduction reaction. The electron transfer rate is modulated by changing the length of the self‐assembled monolayer, and the proton transfer rate by a modified lipid membrane. By tuning the relative proton and electron transfer rates, the current density is enhanced without altering its core molecular structure.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30171786</pmid><doi>10.1002/anie.201806795</doi><tpages>4</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-4893-9506</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2018-10, Vol.57 (41), p.13480-13483 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2098769034 |
source | Wiley Online Library All Journals |
subjects | Alkynes Catalysis Catalysts Chemical reduction Chemical synthesis electrocatalysis Electrochemistry Electron transfer Electrons Gold Lipids Molecular structure Organic chemistry oxygen reduction Oxygen reduction reactions Parameter identification proton and electron transfer Protons self-assembled monolayers voltammetry |
title | Controlling Proton and Electron Transfer Rates to Enhance the Activity of an Oxygen Reduction Electrocatalyst |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Proton%20and%20Electron%20Transfer%20Rates%20to%20Enhance%20the%20Activity%20of%20an%20Oxygen%20Reduction%20Electrocatalyst&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Gautam,%20Rajendra%20P.&rft.date=2018-10-08&rft.volume=57&rft.issue=41&rft.spage=13480&rft.epage=13483&rft.pages=13480-13483&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201806795&rft_dat=%3Cproquest_cross%3E2115980706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2115980706&rft_id=info:pmid/30171786&rfr_iscdi=true |