Model of Mercury Flux Associated with Volcanic Activity
Volcanic activity is one of the primary sources of mercury in the earth’s ecosystem. In this work, volcanic rocks from four geotectonically distinct localities (the Czech Republic – intraplate, rift-related alkaline basaltic rocks; Iceland – hotspot/rift-related tholeiitic basaltic rocks; Japan – is...
Gespeichert in:
Veröffentlicht in: | Bulletin of environmental contamination and toxicology 2018-11, Vol.101 (5), p.549-553 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553 |
---|---|
container_issue | 5 |
container_start_page | 549 |
container_title | Bulletin of environmental contamination and toxicology |
container_volume | 101 |
creator | Coufalík, Pavel Krmíček, Lukáš Zvěřina, Ondřej Meszarosová, Natália Hladil, Jindřich Komárek, Josef |
description | Volcanic activity is one of the primary sources of mercury in the earth’s ecosystem. In this work, volcanic rocks from four geotectonically distinct localities (the Czech Republic – intraplate, rift-related alkaline basaltic rocks; Iceland – hotspot/rift-related tholeiitic basaltic rocks; Japan – island arc calc-alkaline andesites; and Alaska – continental arc calc-alkaline dacites) were studied. Ultra-trace Hg contents in all samples ranged from 0.3 up to 6 µg/kg. The highest Hg content was determined for volcanic ash from Mount Redoubt (Alaska, USA). In the case of basaltic volcanic rocks, the obtained results are about two orders of magnitude smaller than values formerly assumed for primary mercury contents in basaltic lavas. They are close to predicted Hg contents in the mantle source, i.e. below 0.5 µg/kg. Hg degassing is probably a key process for the resulting Hg contents in material ejected during volcanic eruption, which is previously enriched by Hg in the shallow-crust. |
doi_str_mv | 10.1007/s00128-018-2430-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2098766706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2097281198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f952f8d7c782c3f2dc07f3b3c51dd037dd1876e299ed2df28f1e3827ee0ca8223</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqXwA1hQJBYWw_ncxM5YVRSQiliA1Ur9AanSpNgJ0H-PqxSQkJhuuOd97_QQcsrgkgGIqwDAUFJgkuKYA033yJCNOVKQAPtkCBGiY5mxATkKYRnpVCIekgEHlgmR8SER942xVdK45N563flNMqu6z2QSQqPLorUm-Sjb1-S5qXRRlzqZ6LZ8L9vNMTlwRRXsyW6OyNPs-nF6S-cPN3fTyZxqLrClLk_RSSO0kKi5Q6NBOL7gOmXGABfGMCkyi3luDRqH0jHLJQprQRfxVz4iF33v2jdvnQ2tWpVB26oqatt0QSHksSATkEX0_A-6bDpfx--2lEDJWC4jxXpK-yYEb51a-3JV-I1ioLZWVW9VRatqa1WlMXO2a-4WK2t-Et8aI4A9EOKqfrH-9_T_rV-6EoAx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2097281198</pqid></control><display><type>article</type><title>Model of Mercury Flux Associated with Volcanic Activity</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Coufalík, Pavel ; Krmíček, Lukáš ; Zvěřina, Ondřej ; Meszarosová, Natália ; Hladil, Jindřich ; Komárek, Josef</creator><creatorcontrib>Coufalík, Pavel ; Krmíček, Lukáš ; Zvěřina, Ondřej ; Meszarosová, Natália ; Hladil, Jindřich ; Komárek, Josef</creatorcontrib><description>Volcanic activity is one of the primary sources of mercury in the earth’s ecosystem. In this work, volcanic rocks from four geotectonically distinct localities (the Czech Republic – intraplate, rift-related alkaline basaltic rocks; Iceland – hotspot/rift-related tholeiitic basaltic rocks; Japan – island arc calc-alkaline andesites; and Alaska – continental arc calc-alkaline dacites) were studied. Ultra-trace Hg contents in all samples ranged from 0.3 up to 6 µg/kg. The highest Hg content was determined for volcanic ash from Mount Redoubt (Alaska, USA). In the case of basaltic volcanic rocks, the obtained results are about two orders of magnitude smaller than values formerly assumed for primary mercury contents in basaltic lavas. They are close to predicted Hg contents in the mantle source, i.e. below 0.5 µg/kg. Hg degassing is probably a key process for the resulting Hg contents in material ejected during volcanic eruption, which is previously enriched by Hg in the shallow-crust.</description><identifier>ISSN: 0007-4861</identifier><identifier>EISSN: 1432-0800</identifier><identifier>DOI: 10.1007/s00128-018-2430-5</identifier><identifier>PMID: 30167763</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aquatic Pollution ; Degassing ; Earth and Environmental Science ; Ecotoxicology ; Ejection ; Environment ; Environmental Chemistry ; Environmental Health ; Hot spots (geology) ; Island arcs ; Lava ; Magma ; Mercury ; Mercury (metal) ; Mercury - analysis ; Pollution ; Rocks ; Silicates - analysis ; Soil Science & Conservation ; Volcanic activity ; Volcanic ash ; Volcanic eruptions ; Volcanic Eruptions - analysis ; Volcanic rocks ; Volcanoes ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Bulletin of environmental contamination and toxicology, 2018-11, Vol.101 (5), p.549-553</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018. Corrected publication September/2018</rights><rights>Bulletin of Environmental Contamination and Toxicology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f952f8d7c782c3f2dc07f3b3c51dd037dd1876e299ed2df28f1e3827ee0ca8223</citedby><cites>FETCH-LOGICAL-c372t-f952f8d7c782c3f2dc07f3b3c51dd037dd1876e299ed2df28f1e3827ee0ca8223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00128-018-2430-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00128-018-2430-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30167763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Coufalík, Pavel</creatorcontrib><creatorcontrib>Krmíček, Lukáš</creatorcontrib><creatorcontrib>Zvěřina, Ondřej</creatorcontrib><creatorcontrib>Meszarosová, Natália</creatorcontrib><creatorcontrib>Hladil, Jindřich</creatorcontrib><creatorcontrib>Komárek, Josef</creatorcontrib><title>Model of Mercury Flux Associated with Volcanic Activity</title><title>Bulletin of environmental contamination and toxicology</title><addtitle>Bull Environ Contam Toxicol</addtitle><addtitle>Bull Environ Contam Toxicol</addtitle><description>Volcanic activity is one of the primary sources of mercury in the earth’s ecosystem. In this work, volcanic rocks from four geotectonically distinct localities (the Czech Republic – intraplate, rift-related alkaline basaltic rocks; Iceland – hotspot/rift-related tholeiitic basaltic rocks; Japan – island arc calc-alkaline andesites; and Alaska – continental arc calc-alkaline dacites) were studied. Ultra-trace Hg contents in all samples ranged from 0.3 up to 6 µg/kg. The highest Hg content was determined for volcanic ash from Mount Redoubt (Alaska, USA). In the case of basaltic volcanic rocks, the obtained results are about two orders of magnitude smaller than values formerly assumed for primary mercury contents in basaltic lavas. They are close to predicted Hg contents in the mantle source, i.e. below 0.5 µg/kg. Hg degassing is probably a key process for the resulting Hg contents in material ejected during volcanic eruption, which is previously enriched by Hg in the shallow-crust.</description><subject>Aquatic Pollution</subject><subject>Degassing</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Ejection</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Health</subject><subject>Hot spots (geology)</subject><subject>Island arcs</subject><subject>Lava</subject><subject>Magma</subject><subject>Mercury</subject><subject>Mercury (metal)</subject><subject>Mercury - analysis</subject><subject>Pollution</subject><subject>Rocks</subject><subject>Silicates - analysis</subject><subject>Soil Science & Conservation</subject><subject>Volcanic activity</subject><subject>Volcanic ash</subject><subject>Volcanic eruptions</subject><subject>Volcanic Eruptions - analysis</subject><subject>Volcanic rocks</subject><subject>Volcanoes</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0007-4861</issn><issn>1432-0800</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kD1PwzAQhi0EoqXwA1hQJBYWw_ncxM5YVRSQiliA1Ur9AanSpNgJ0H-PqxSQkJhuuOd97_QQcsrgkgGIqwDAUFJgkuKYA033yJCNOVKQAPtkCBGiY5mxATkKYRnpVCIekgEHlgmR8SER942xVdK45N563flNMqu6z2QSQqPLorUm-Sjb1-S5qXRRlzqZ6LZ8L9vNMTlwRRXsyW6OyNPs-nF6S-cPN3fTyZxqLrClLk_RSSO0kKi5Q6NBOL7gOmXGABfGMCkyi3luDRqH0jHLJQprQRfxVz4iF33v2jdvnQ2tWpVB26oqatt0QSHksSATkEX0_A-6bDpfx--2lEDJWC4jxXpK-yYEb51a-3JV-I1ioLZWVW9VRatqa1WlMXO2a-4WK2t-Et8aI4A9EOKqfrH-9_T_rV-6EoAx</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Coufalík, Pavel</creator><creator>Krmíček, Lukáš</creator><creator>Zvěřina, Ondřej</creator><creator>Meszarosová, Natália</creator><creator>Hladil, Jindřich</creator><creator>Komárek, Josef</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T7</scope><scope>7TK</scope><scope>7TV</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20181101</creationdate><title>Model of Mercury Flux Associated with Volcanic Activity</title><author>Coufalík, Pavel ; Krmíček, Lukáš ; Zvěřina, Ondřej ; Meszarosová, Natália ; Hladil, Jindřich ; Komárek, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f952f8d7c782c3f2dc07f3b3c51dd037dd1876e299ed2df28f1e3827ee0ca8223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aquatic Pollution</topic><topic>Degassing</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Ejection</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Health</topic><topic>Hot spots (geology)</topic><topic>Island arcs</topic><topic>Lava</topic><topic>Magma</topic><topic>Mercury</topic><topic>Mercury (metal)</topic><topic>Mercury - analysis</topic><topic>Pollution</topic><topic>Rocks</topic><topic>Silicates - analysis</topic><topic>Soil Science & Conservation</topic><topic>Volcanic activity</topic><topic>Volcanic ash</topic><topic>Volcanic eruptions</topic><topic>Volcanic Eruptions - analysis</topic><topic>Volcanic rocks</topic><topic>Volcanoes</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coufalík, Pavel</creatorcontrib><creatorcontrib>Krmíček, Lukáš</creatorcontrib><creatorcontrib>Zvěřina, Ondřej</creatorcontrib><creatorcontrib>Meszarosová, Natália</creatorcontrib><creatorcontrib>Hladil, Jindřich</creatorcontrib><creatorcontrib>Komárek, Josef</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of environmental contamination and toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coufalík, Pavel</au><au>Krmíček, Lukáš</au><au>Zvěřina, Ondřej</au><au>Meszarosová, Natália</au><au>Hladil, Jindřich</au><au>Komárek, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model of Mercury Flux Associated with Volcanic Activity</atitle><jtitle>Bulletin of environmental contamination and toxicology</jtitle><stitle>Bull Environ Contam Toxicol</stitle><addtitle>Bull Environ Contam Toxicol</addtitle><date>2018-11-01</date><risdate>2018</risdate><volume>101</volume><issue>5</issue><spage>549</spage><epage>553</epage><pages>549-553</pages><issn>0007-4861</issn><eissn>1432-0800</eissn><abstract>Volcanic activity is one of the primary sources of mercury in the earth’s ecosystem. In this work, volcanic rocks from four geotectonically distinct localities (the Czech Republic – intraplate, rift-related alkaline basaltic rocks; Iceland – hotspot/rift-related tholeiitic basaltic rocks; Japan – island arc calc-alkaline andesites; and Alaska – continental arc calc-alkaline dacites) were studied. Ultra-trace Hg contents in all samples ranged from 0.3 up to 6 µg/kg. The highest Hg content was determined for volcanic ash from Mount Redoubt (Alaska, USA). In the case of basaltic volcanic rocks, the obtained results are about two orders of magnitude smaller than values formerly assumed for primary mercury contents in basaltic lavas. They are close to predicted Hg contents in the mantle source, i.e. below 0.5 µg/kg. Hg degassing is probably a key process for the resulting Hg contents in material ejected during volcanic eruption, which is previously enriched by Hg in the shallow-crust.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>30167763</pmid><doi>10.1007/s00128-018-2430-5</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-4861 |
ispartof | Bulletin of environmental contamination and toxicology, 2018-11, Vol.101 (5), p.549-553 |
issn | 0007-4861 1432-0800 |
language | eng |
recordid | cdi_proquest_miscellaneous_2098766706 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Aquatic Pollution Degassing Earth and Environmental Science Ecotoxicology Ejection Environment Environmental Chemistry Environmental Health Hot spots (geology) Island arcs Lava Magma Mercury Mercury (metal) Mercury - analysis Pollution Rocks Silicates - analysis Soil Science & Conservation Volcanic activity Volcanic ash Volcanic eruptions Volcanic Eruptions - analysis Volcanic rocks Volcanoes Waste Water Technology Water Management Water Pollution Control |
title | Model of Mercury Flux Associated with Volcanic Activity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model%20of%20Mercury%20Flux%20Associated%20with%20Volcanic%20Activity&rft.jtitle=Bulletin%20of%20environmental%20contamination%20and%20toxicology&rft.au=Coufal%C3%ADk,%20Pavel&rft.date=2018-11-01&rft.volume=101&rft.issue=5&rft.spage=549&rft.epage=553&rft.pages=549-553&rft.issn=0007-4861&rft.eissn=1432-0800&rft_id=info:doi/10.1007/s00128-018-2430-5&rft_dat=%3Cproquest_cross%3E2097281198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2097281198&rft_id=info:pmid/30167763&rfr_iscdi=true |