Point spread function calibration requirements for dark energy from cosmic shear

Context. The control of systematic effects when measuring background galaxy shapes is one of the main challenges for cosmic shear analyses. Aims. Study the fundamental limitations on shear accuracy due to the measurement of the point spread function (PSF) from the finite number of stars that are ava...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2008-06, Vol.484 (1), p.67-77
Hauptverfasser: Paulin-Henriksson, S., Amara, A., Voigt, L., Refregier, A., Bridle, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 1
container_start_page 67
container_title Astronomy and astrophysics (Berlin)
container_volume 484
creator Paulin-Henriksson, S.
Amara, A.
Voigt, L.
Refregier, A.
Bridle, S. L.
description Context. The control of systematic effects when measuring background galaxy shapes is one of the main challenges for cosmic shear analyses. Aims. Study the fundamental limitations on shear accuracy due to the measurement of the point spread function (PSF) from the finite number of stars that are available. We translate the accuracy required for cosmological parameter estimation to the minimum number of stars over which the PSF must be calibrated. Methods. We characterise the error made in the shear arising from errors on the PSF. We consider different PSF models, from a simple elliptical Gaussian to various shapelet parametrisations. First we derive our results analytically in the case of infinitely small pixels (i.e. infinitely high resolution), then image simulations are used to validate these results and investigate the effect of finite pixel size in the case of the elliptical Gaussian PSF. Results. Our results are expressed in terms of the minimum number of stars required to calibrate the PSF in order to ensure that systematic errors are smaller than statistical errors when estimating the cosmological parameters. On scales smaller than the area containing this minimum number of stars, there is not enough information to model the PSF. This means that these small scales should not be used to constrain cosmology unless the instrument and the observing strategy are optimised to make this variability extremely small. The minimum number of stars varies with the square of the star Signal-to-Noise Ratio, with the complexity of the PSF and with the pixel size. In the case of an elliptical Gaussian PSF and in the absence of dithering, 2 pixels per PSF full width at half maximum (FWHM) implies a 20% increase of the minimum number of stars compared to the ideal case of infinitely small pixels; 0.9 pixels per PSF FWHM implies a factor 100 increase. Conclusions. In the case of a good resolution and a typical Signal-to-Noise Ratio distribution of stars, we find that current surveys need the PSF to be calibrated over a few stars, which may explain residual systematics on scales smaller than a few arcmins. Future all-sky cosmic shear surveys require the PSF to be calibrated over a region containing about 50 stars. Due to the simplicity of our models these results should be interpreted as optimistic and therefore provide a measure of a systematic “floor' intrinsic to shape measurements.
doi_str_mv 10.1051/0004-6361:20079150
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20953594</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20953594</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-3224708ecbc93bfbcb47fef8f58360e8b67819ae5838ca698759f0fa7ff227f93</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA6y8gV1gbCexzQ4hXhISFRSVneW4YzA0SWunEv17Ulq6mrmac2dxCDllcMGgYJcAkGelKNkVB5CaFbBHBiwXPAOZl_tksAMOyVFKX33kTIkBGY3a0HQ0zSPaKfXLxnWhbaizs1BF-7dHXCxDxBqbLlHfRjq18Ztig_FjRX1sa-raVAdH0yfaeEwOvJ0lPNnOIXm7ux3fPGRPz_ePN9dPmRMaukxwnktQ6CqnReUrV-XSo1e-UKIEVFUpFdMW-6icLbWShfbgrfSec-m1GJLzzd95bBdLTJ2pQ3I4m9kG22UyHHQhCp33IN-ALrYpRfRmHkNt48owMGt5Zu3GrN2Yf3l96Wz73abehY-2cSHtmhyE6inRc9mGC6nDn929F2RKKWRhFEzMJJ-8Fy96bF7FL1xdfq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20953594</pqid></control><display><type>article</type><title>Point spread function calibration requirements for dark energy from cosmic shear</title><source>EDP Sciences</source><source>EZB Electronic Journals Library</source><source>EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX</source><creator>Paulin-Henriksson, S. ; Amara, A. ; Voigt, L. ; Refregier, A. ; Bridle, S. L.</creator><creatorcontrib>Paulin-Henriksson, S. ; Amara, A. ; Voigt, L. ; Refregier, A. ; Bridle, S. L.</creatorcontrib><description>Context. The control of systematic effects when measuring background galaxy shapes is one of the main challenges for cosmic shear analyses. Aims. Study the fundamental limitations on shear accuracy due to the measurement of the point spread function (PSF) from the finite number of stars that are available. We translate the accuracy required for cosmological parameter estimation to the minimum number of stars over which the PSF must be calibrated. Methods. We characterise the error made in the shear arising from errors on the PSF. We consider different PSF models, from a simple elliptical Gaussian to various shapelet parametrisations. First we derive our results analytically in the case of infinitely small pixels (i.e. infinitely high resolution), then image simulations are used to validate these results and investigate the effect of finite pixel size in the case of the elliptical Gaussian PSF. Results. Our results are expressed in terms of the minimum number of stars required to calibrate the PSF in order to ensure that systematic errors are smaller than statistical errors when estimating the cosmological parameters. On scales smaller than the area containing this minimum number of stars, there is not enough information to model the PSF. This means that these small scales should not be used to constrain cosmology unless the instrument and the observing strategy are optimised to make this variability extremely small. The minimum number of stars varies with the square of the star Signal-to-Noise Ratio, with the complexity of the PSF and with the pixel size. In the case of an elliptical Gaussian PSF and in the absence of dithering, 2 pixels per PSF full width at half maximum (FWHM) implies a 20% increase of the minimum number of stars compared to the ideal case of infinitely small pixels; 0.9 pixels per PSF FWHM implies a factor 100 increase. Conclusions. In the case of a good resolution and a typical Signal-to-Noise Ratio distribution of stars, we find that current surveys need the PSF to be calibrated over a few stars, which may explain residual systematics on scales smaller than a few arcmins. Future all-sky cosmic shear surveys require the PSF to be calibrated over a region containing about 50 stars. Due to the simplicity of our models these results should be interpreted as optimistic and therefore provide a measure of a systematic “floor' intrinsic to shape measurements.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361:20079150</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Astronomy ; cosmology: cosmological parameters ; cosmology: dark matter ; Earth, ocean, space ; Exact sciences and technology ; gravitational lensing</subject><ispartof>Astronomy and astrophysics (Berlin), 2008-06, Vol.484 (1), p.67-77</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-3224708ecbc93bfbcb47fef8f58360e8b67819ae5838ca698759f0fa7ff227f93</citedby><cites>FETCH-LOGICAL-c390t-3224708ecbc93bfbcb47fef8f58360e8b67819ae5838ca698759f0fa7ff227f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3725,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20385033$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Paulin-Henriksson, S.</creatorcontrib><creatorcontrib>Amara, A.</creatorcontrib><creatorcontrib>Voigt, L.</creatorcontrib><creatorcontrib>Refregier, A.</creatorcontrib><creatorcontrib>Bridle, S. L.</creatorcontrib><title>Point spread function calibration requirements for dark energy from cosmic shear</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. The control of systematic effects when measuring background galaxy shapes is one of the main challenges for cosmic shear analyses. Aims. Study the fundamental limitations on shear accuracy due to the measurement of the point spread function (PSF) from the finite number of stars that are available. We translate the accuracy required for cosmological parameter estimation to the minimum number of stars over which the PSF must be calibrated. Methods. We characterise the error made in the shear arising from errors on the PSF. We consider different PSF models, from a simple elliptical Gaussian to various shapelet parametrisations. First we derive our results analytically in the case of infinitely small pixels (i.e. infinitely high resolution), then image simulations are used to validate these results and investigate the effect of finite pixel size in the case of the elliptical Gaussian PSF. Results. Our results are expressed in terms of the minimum number of stars required to calibrate the PSF in order to ensure that systematic errors are smaller than statistical errors when estimating the cosmological parameters. On scales smaller than the area containing this minimum number of stars, there is not enough information to model the PSF. This means that these small scales should not be used to constrain cosmology unless the instrument and the observing strategy are optimised to make this variability extremely small. The minimum number of stars varies with the square of the star Signal-to-Noise Ratio, with the complexity of the PSF and with the pixel size. In the case of an elliptical Gaussian PSF and in the absence of dithering, 2 pixels per PSF full width at half maximum (FWHM) implies a 20% increase of the minimum number of stars compared to the ideal case of infinitely small pixels; 0.9 pixels per PSF FWHM implies a factor 100 increase. Conclusions. In the case of a good resolution and a typical Signal-to-Noise Ratio distribution of stars, we find that current surveys need the PSF to be calibrated over a few stars, which may explain residual systematics on scales smaller than a few arcmins. Future all-sky cosmic shear surveys require the PSF to be calibrated over a region containing about 50 stars. Due to the simplicity of our models these results should be interpreted as optimistic and therefore provide a measure of a systematic “floor' intrinsic to shape measurements.</description><subject>Astronomy</subject><subject>cosmology: cosmological parameters</subject><subject>cosmology: dark matter</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>gravitational lensing</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwA6y8gV1gbCexzQ4hXhISFRSVneW4YzA0SWunEv17Ulq6mrmac2dxCDllcMGgYJcAkGelKNkVB5CaFbBHBiwXPAOZl_tksAMOyVFKX33kTIkBGY3a0HQ0zSPaKfXLxnWhbaizs1BF-7dHXCxDxBqbLlHfRjq18Ztig_FjRX1sa-raVAdH0yfaeEwOvJ0lPNnOIXm7ux3fPGRPz_ePN9dPmRMaukxwnktQ6CqnReUrV-XSo1e-UKIEVFUpFdMW-6icLbWShfbgrfSec-m1GJLzzd95bBdLTJ2pQ3I4m9kG22UyHHQhCp33IN-ALrYpRfRmHkNt48owMGt5Zu3GrN2Yf3l96Wz73abehY-2cSHtmhyE6inRc9mGC6nDn929F2RKKWRhFEzMJJ-8Fy96bF7FL1xdfq0</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Paulin-Henriksson, S.</creator><creator>Amara, A.</creator><creator>Voigt, L.</creator><creator>Refregier, A.</creator><creator>Bridle, S. L.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20080601</creationdate><title>Point spread function calibration requirements for dark energy from cosmic shear</title><author>Paulin-Henriksson, S. ; Amara, A. ; Voigt, L. ; Refregier, A. ; Bridle, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-3224708ecbc93bfbcb47fef8f58360e8b67819ae5838ca698759f0fa7ff227f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Astronomy</topic><topic>cosmology: cosmological parameters</topic><topic>cosmology: dark matter</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>gravitational lensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulin-Henriksson, S.</creatorcontrib><creatorcontrib>Amara, A.</creatorcontrib><creatorcontrib>Voigt, L.</creatorcontrib><creatorcontrib>Refregier, A.</creatorcontrib><creatorcontrib>Bridle, S. L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulin-Henriksson, S.</au><au>Amara, A.</au><au>Voigt, L.</au><au>Refregier, A.</au><au>Bridle, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Point spread function calibration requirements for dark energy from cosmic shear</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>484</volume><issue>1</issue><spage>67</spage><epage>77</epage><pages>67-77</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>Context. The control of systematic effects when measuring background galaxy shapes is one of the main challenges for cosmic shear analyses. Aims. Study the fundamental limitations on shear accuracy due to the measurement of the point spread function (PSF) from the finite number of stars that are available. We translate the accuracy required for cosmological parameter estimation to the minimum number of stars over which the PSF must be calibrated. Methods. We characterise the error made in the shear arising from errors on the PSF. We consider different PSF models, from a simple elliptical Gaussian to various shapelet parametrisations. First we derive our results analytically in the case of infinitely small pixels (i.e. infinitely high resolution), then image simulations are used to validate these results and investigate the effect of finite pixel size in the case of the elliptical Gaussian PSF. Results. Our results are expressed in terms of the minimum number of stars required to calibrate the PSF in order to ensure that systematic errors are smaller than statistical errors when estimating the cosmological parameters. On scales smaller than the area containing this minimum number of stars, there is not enough information to model the PSF. This means that these small scales should not be used to constrain cosmology unless the instrument and the observing strategy are optimised to make this variability extremely small. The minimum number of stars varies with the square of the star Signal-to-Noise Ratio, with the complexity of the PSF and with the pixel size. In the case of an elliptical Gaussian PSF and in the absence of dithering, 2 pixels per PSF full width at half maximum (FWHM) implies a 20% increase of the minimum number of stars compared to the ideal case of infinitely small pixels; 0.9 pixels per PSF FWHM implies a factor 100 increase. Conclusions. In the case of a good resolution and a typical Signal-to-Noise Ratio distribution of stars, we find that current surveys need the PSF to be calibrated over a few stars, which may explain residual systematics on scales smaller than a few arcmins. Future all-sky cosmic shear surveys require the PSF to be calibrated over a region containing about 50 stars. Due to the simplicity of our models these results should be interpreted as optimistic and therefore provide a measure of a systematic “floor' intrinsic to shape measurements.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361:20079150</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2008-06, Vol.484 (1), p.67-77
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_20953594
source EDP Sciences; EZB Electronic Journals Library; EDP Sciences - Revues - Licences nationales - accès par la plateforme ISTEX
subjects Astronomy
cosmology: cosmological parameters
cosmology: dark matter
Earth, ocean, space
Exact sciences and technology
gravitational lensing
title Point spread function calibration requirements for dark energy from cosmic shear
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A28%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Point%20spread%20function%20calibration%20requirements%20for%20dark%20energy%20from%20cosmic%20shear&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Paulin-Henriksson,%20S.&rft.date=2008-06-01&rft.volume=484&rft.issue=1&rft.spage=67&rft.epage=77&rft.pages=67-77&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361:20079150&rft_dat=%3Cproquest_cross%3E20953594%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20953594&rft_id=info:pmid/&rfr_iscdi=true