Explaining the mass-to-light ratios of globular clusters

Context. The majority of observed mass-to-light ratios of globular clusters are too low to be explained by “canonical” cluster models, in which dynamical effects are not accounted for. Moreover, these models do not reproduce a recently reported trend of increasing $M/L$ with cluster mass, but instea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2008-08, Vol.486 (3), p.L21-L24
1. Verfasser: Kruijssen, J. M. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L24
container_issue 3
container_start_page L21
container_title Astronomy and astrophysics (Berlin)
container_volume 486
creator Kruijssen, J. M. D.
description Context. The majority of observed mass-to-light ratios of globular clusters are too low to be explained by “canonical” cluster models, in which dynamical effects are not accounted for. Moreover, these models do not reproduce a recently reported trend of increasing $M/L$ with cluster mass, but instead predict mass-to-light ratios that are independent of cluster mass for a fixed age and metallicity. Aims. This study aims to explain the $M/L$ of globular clusters in four galaxies by including stellar evolution, stellar remnants, and the preferential loss of low-mass stars due to energy equipartition. Methods. Analytical cluster models are applied that account for stellar evolution and dynamical cluster dissolution to samples of globular clusters in Cen A, the Milky Way, M 31 and the LMC. The models include stellar remnants and cover metallicities in the range $Z = 0.0004{-}0.05$. Results. Both the low observed mass-to-light ratios and the trend of increasing $M/L$ with cluster mass can be reproduced by including the preferential loss of low-mass stars, assuming reasonable values for the dissolution timescale. This leads to a mass-dependent $M/L$ evolution and increases the explained percentage of the observations from 39% to 92%. Conclusions. This study shows that the hitherto unexplained discrepancy between observations and models of the mass-to-light ratios of globular clusters can be explained by dynamical effects, provided that the globular clusters exhibiting low $M/L$ have dissolution timescales within the ranges assumed in this Letter. Furthermore, it substantiates that $M/L$ cannot be assumed to be constant with mass at fixed age and metallicity.
doi_str_mv 10.1051/0004-6361:200810237
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20950026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20950026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-6dd2a7b9115120c5e55700eb414b4abc1f3fa6b9a7df039c78c50e46b0487dd83</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKu_wMte9BadfO96k-IXFrRF8Riy2WwbTbs12YX6793SsqdhmOd9YR6ELgncEBDkFgA4lkySOwqQE6BMHaER4YxiUFweo9FAnKKzlL77lZKcjVD-sN0E49d-vcjapctWJiXcNjj4xbLNoml9k7KmzhahKbtgYmZDl1oX0zk6qU1I7uIwx-jz8eFj8oynb08vk_sptqxgLZZVRY0qC0IEoWCFE0IBuJITXnJTWlKz2siyMKqqgRVW5VaA47IEnquqytkYXe97N7H57Vxq9con60Iwa9d0SVMoRP-M7EG2B21sUoqu1pvoVyb-aQJ6Z0nvHOidAz1Y6lNXh3qTrAl1NGvr0xClfa4ogPUc3nO-_3473E380VIxJXQOX3oOr7Pp7H2m5-wfsOJ1dA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20950026</pqid></control><display><type>article</type><title>Explaining the mass-to-light ratios of globular clusters</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EDP Sciences</source><creator>Kruijssen, J. M. D.</creator><creatorcontrib>Kruijssen, J. M. D.</creatorcontrib><description>Context. The majority of observed mass-to-light ratios of globular clusters are too low to be explained by “canonical” cluster models, in which dynamical effects are not accounted for. Moreover, these models do not reproduce a recently reported trend of increasing $M/L$ with cluster mass, but instead predict mass-to-light ratios that are independent of cluster mass for a fixed age and metallicity. Aims. This study aims to explain the $M/L$ of globular clusters in four galaxies by including stellar evolution, stellar remnants, and the preferential loss of low-mass stars due to energy equipartition. Methods. Analytical cluster models are applied that account for stellar evolution and dynamical cluster dissolution to samples of globular clusters in Cen A, the Milky Way, M 31 and the LMC. The models include stellar remnants and cover metallicities in the range $Z = 0.0004{-}0.05$. Results. Both the low observed mass-to-light ratios and the trend of increasing $M/L$ with cluster mass can be reproduced by including the preferential loss of low-mass stars, assuming reasonable values for the dissolution timescale. This leads to a mass-dependent $M/L$ evolution and increases the explained percentage of the observations from 39% to 92%. Conclusions. This study shows that the hitherto unexplained discrepancy between observations and models of the mass-to-light ratios of globular clusters can be explained by dynamical effects, provided that the globular clusters exhibiting low $M/L$ have dissolution timescales within the ranges assumed in this Letter. Furthermore, it substantiates that $M/L$ cannot be assumed to be constant with mass at fixed age and metallicity.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361:200810237</identifier><identifier>CODEN: AAEJAF</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology ; galaxies: star clusters ; galaxies: stellar content ; Galaxy: globular clusters: general ; methods: analytical</subject><ispartof>Astronomy and astrophysics (Berlin), 2008-08, Vol.486 (3), p.L21-L24</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-6dd2a7b9115120c5e55700eb414b4abc1f3fa6b9a7df039c78c50e46b0487dd83</citedby><cites>FETCH-LOGICAL-c393t-6dd2a7b9115120c5e55700eb414b4abc1f3fa6b9a7df039c78c50e46b0487dd83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3728,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20519903$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruijssen, J. M. D.</creatorcontrib><title>Explaining the mass-to-light ratios of globular clusters</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. The majority of observed mass-to-light ratios of globular clusters are too low to be explained by “canonical” cluster models, in which dynamical effects are not accounted for. Moreover, these models do not reproduce a recently reported trend of increasing $M/L$ with cluster mass, but instead predict mass-to-light ratios that are independent of cluster mass for a fixed age and metallicity. Aims. This study aims to explain the $M/L$ of globular clusters in four galaxies by including stellar evolution, stellar remnants, and the preferential loss of low-mass stars due to energy equipartition. Methods. Analytical cluster models are applied that account for stellar evolution and dynamical cluster dissolution to samples of globular clusters in Cen A, the Milky Way, M 31 and the LMC. The models include stellar remnants and cover metallicities in the range $Z = 0.0004{-}0.05$. Results. Both the low observed mass-to-light ratios and the trend of increasing $M/L$ with cluster mass can be reproduced by including the preferential loss of low-mass stars, assuming reasonable values for the dissolution timescale. This leads to a mass-dependent $M/L$ evolution and increases the explained percentage of the observations from 39% to 92%. Conclusions. This study shows that the hitherto unexplained discrepancy between observations and models of the mass-to-light ratios of globular clusters can be explained by dynamical effects, provided that the globular clusters exhibiting low $M/L$ have dissolution timescales within the ranges assumed in this Letter. Furthermore, it substantiates that $M/L$ cannot be assumed to be constant with mass at fixed age and metallicity.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>galaxies: star clusters</subject><subject>galaxies: stellar content</subject><subject>Galaxy: globular clusters: general</subject><subject>methods: analytical</subject><issn>0004-6361</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKu_wMte9BadfO96k-IXFrRF8Riy2WwbTbs12YX6793SsqdhmOd9YR6ELgncEBDkFgA4lkySOwqQE6BMHaER4YxiUFweo9FAnKKzlL77lZKcjVD-sN0E49d-vcjapctWJiXcNjj4xbLNoml9k7KmzhahKbtgYmZDl1oX0zk6qU1I7uIwx-jz8eFj8oynb08vk_sptqxgLZZVRY0qC0IEoWCFE0IBuJITXnJTWlKz2siyMKqqgRVW5VaA47IEnquqytkYXe97N7H57Vxq9con60Iwa9d0SVMoRP-M7EG2B21sUoqu1pvoVyb-aQJ6Z0nvHOidAz1Y6lNXh3qTrAl1NGvr0xClfa4ogPUc3nO-_3473E380VIxJXQOX3oOr7Pp7H2m5-wfsOJ1dA</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Kruijssen, J. M. D.</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20080801</creationdate><title>Explaining the mass-to-light ratios of globular clusters</title><author>Kruijssen, J. M. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-6dd2a7b9115120c5e55700eb414b4abc1f3fa6b9a7df039c78c50e46b0487dd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>galaxies: star clusters</topic><topic>galaxies: stellar content</topic><topic>Galaxy: globular clusters: general</topic><topic>methods: analytical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruijssen, J. M. D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruijssen, J. M. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explaining the mass-to-light ratios of globular clusters</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2008-08-01</date><risdate>2008</risdate><volume>486</volume><issue>3</issue><spage>L21</spage><epage>L24</epage><pages>L21-L24</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><coden>AAEJAF</coden><abstract>Context. The majority of observed mass-to-light ratios of globular clusters are too low to be explained by “canonical” cluster models, in which dynamical effects are not accounted for. Moreover, these models do not reproduce a recently reported trend of increasing $M/L$ with cluster mass, but instead predict mass-to-light ratios that are independent of cluster mass for a fixed age and metallicity. Aims. This study aims to explain the $M/L$ of globular clusters in four galaxies by including stellar evolution, stellar remnants, and the preferential loss of low-mass stars due to energy equipartition. Methods. Analytical cluster models are applied that account for stellar evolution and dynamical cluster dissolution to samples of globular clusters in Cen A, the Milky Way, M 31 and the LMC. The models include stellar remnants and cover metallicities in the range $Z = 0.0004{-}0.05$. Results. Both the low observed mass-to-light ratios and the trend of increasing $M/L$ with cluster mass can be reproduced by including the preferential loss of low-mass stars, assuming reasonable values for the dissolution timescale. This leads to a mass-dependent $M/L$ evolution and increases the explained percentage of the observations from 39% to 92%. Conclusions. This study shows that the hitherto unexplained discrepancy between observations and models of the mass-to-light ratios of globular clusters can be explained by dynamical effects, provided that the globular clusters exhibiting low $M/L$ have dissolution timescales within the ranges assumed in this Letter. Furthermore, it substantiates that $M/L$ cannot be assumed to be constant with mass at fixed age and metallicity.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361:200810237</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2008-08, Vol.486 (3), p.L21-L24
issn 0004-6361
1432-0746
language eng
recordid cdi_proquest_miscellaneous_20950026
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EDP Sciences
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
galaxies: star clusters
galaxies: stellar content
Galaxy: globular clusters: general
methods: analytical
title Explaining the mass-to-light ratios of globular clusters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A18%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explaining%20the%20mass-to-light%20ratios%20of%20globular%20clusters&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Kruijssen,%20J.%20M.%20D.&rft.date=2008-08-01&rft.volume=486&rft.issue=3&rft.spage=L21&rft.epage=L24&rft.pages=L21-L24&rft.issn=0004-6361&rft.eissn=1432-0746&rft.coden=AAEJAF&rft_id=info:doi/10.1051/0004-6361:200810237&rft_dat=%3Cproquest_cross%3E20950026%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20950026&rft_id=info:pmid/&rfr_iscdi=true