Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission
A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (P...
Gespeichert in:
Veröffentlicht in: | Advances in space research 2008-10, Vol.42 (8), p.1405-1413 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1413 |
---|---|
container_issue | 8 |
container_start_page | 1405 |
container_title | Advances in space research |
container_volume | 42 |
creator | Flechtner, Frank Neumayer, Karl Hans Kusche, Jürgen Schäfer, Wolfgang Sohl, Frank |
description | A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1
mGal at a spatial resolution of 50
km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28
km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system. |
doi_str_mv | 10.1016/j.asr.2008.06.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20942369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117708003499</els_id><sourcerecordid>20942369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a5651920c8fc815a12980a09433b945c3146f815a8631be127d2c88c55a8a5b23</originalsourceid><addsrcrecordid>eNp9UE1LwzAYDqLgnP4Abzl5a81HP1I8jTGnUJhMPYc0TWdmm8wkHezfm22ePb3wfPE-DwD3GKUY4eJxmwrvUoIQS1GRIkQvwASzskpwlbFLMEGkpAnGZXkNbrzfIoRJWaIJ2L_rYexF0NZAH8b2ADvrYPhSsFVBuUGbM2e7E9iPRji4cWKvQ5Rq1bewc3aAb-vZepHUMDghv7XZQGsaK1x7ci1jkDCwXqzgoL2PebfgqhO9V3d_dwo-nxcf85ekXi1f57M6kbTEIRF5keOKIMk6yXAuMKkYEqjKKG2qLJcUZ0V3JFhBcaNip5ZIxmQeEZE3hE7Bwzl35-zPqHzg8QGp-l4YZUfPScwitKiiEJ-F0lnvner4zulBuAPHiB8X5lseF-bHhTkqeFw4ep7OHhUb7LVy3EutjFStdkoG3lr9j_sX8UKDtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20942369</pqid></control><display><type>article</type><title>Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission</title><source>Elsevier ScienceDirect Journals</source><creator>Flechtner, Frank ; Neumayer, Karl Hans ; Kusche, Jürgen ; Schäfer, Wolfgang ; Sohl, Frank</creator><creatorcontrib>Flechtner, Frank ; Neumayer, Karl Hans ; Kusche, Jürgen ; Schäfer, Wolfgang ; Sohl, Frank</creatorcontrib><description>A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1
mGal at a spatial resolution of 50
km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28
km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2008.06.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>LEO ; Lunar gravity field determination ; Moon ; PRARE-L ; Satellite-to-Satellite tracking</subject><ispartof>Advances in space research, 2008-10, Vol.42 (8), p.1405-1413</ispartof><rights>2008 COSPAR</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a5651920c8fc815a12980a09433b945c3146f815a8631be127d2c88c55a8a5b23</citedby><cites>FETCH-LOGICAL-c371t-a5651920c8fc815a12980a09433b945c3146f815a8631be127d2c88c55a8a5b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0273117708003499$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Flechtner, Frank</creatorcontrib><creatorcontrib>Neumayer, Karl Hans</creatorcontrib><creatorcontrib>Kusche, Jürgen</creatorcontrib><creatorcontrib>Schäfer, Wolfgang</creatorcontrib><creatorcontrib>Sohl, Frank</creatorcontrib><title>Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission</title><title>Advances in space research</title><description>A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1
mGal at a spatial resolution of 50
km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28
km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system.</description><subject>LEO</subject><subject>Lunar gravity field determination</subject><subject>Moon</subject><subject>PRARE-L</subject><subject>Satellite-to-Satellite tracking</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LwzAYDqLgnP4Abzl5a81HP1I8jTGnUJhMPYc0TWdmm8wkHezfm22ePb3wfPE-DwD3GKUY4eJxmwrvUoIQS1GRIkQvwASzskpwlbFLMEGkpAnGZXkNbrzfIoRJWaIJ2L_rYexF0NZAH8b2ADvrYPhSsFVBuUGbM2e7E9iPRji4cWKvQ5Rq1bewc3aAb-vZepHUMDghv7XZQGsaK1x7ci1jkDCwXqzgoL2PebfgqhO9V3d_dwo-nxcf85ekXi1f57M6kbTEIRF5keOKIMk6yXAuMKkYEqjKKG2qLJcUZ0V3JFhBcaNip5ZIxmQeEZE3hE7Bwzl35-zPqHzg8QGp-l4YZUfPScwitKiiEJ-F0lnvner4zulBuAPHiB8X5lseF-bHhTkqeFw4ep7OHhUb7LVy3EutjFStdkoG3lr9j_sX8UKDtA</recordid><startdate>20081015</startdate><enddate>20081015</enddate><creator>Flechtner, Frank</creator><creator>Neumayer, Karl Hans</creator><creator>Kusche, Jürgen</creator><creator>Schäfer, Wolfgang</creator><creator>Sohl, Frank</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20081015</creationdate><title>Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission</title><author>Flechtner, Frank ; Neumayer, Karl Hans ; Kusche, Jürgen ; Schäfer, Wolfgang ; Sohl, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a5651920c8fc815a12980a09433b945c3146f815a8631be127d2c88c55a8a5b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>LEO</topic><topic>Lunar gravity field determination</topic><topic>Moon</topic><topic>PRARE-L</topic><topic>Satellite-to-Satellite tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flechtner, Frank</creatorcontrib><creatorcontrib>Neumayer, Karl Hans</creatorcontrib><creatorcontrib>Kusche, Jürgen</creatorcontrib><creatorcontrib>Schäfer, Wolfgang</creatorcontrib><creatorcontrib>Sohl, Frank</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flechtner, Frank</au><au>Neumayer, Karl Hans</au><au>Kusche, Jürgen</au><au>Schäfer, Wolfgang</au><au>Sohl, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission</atitle><jtitle>Advances in space research</jtitle><date>2008-10-15</date><risdate>2008</risdate><volume>42</volume><issue>8</issue><spage>1405</spage><epage>1413</epage><pages>1405-1413</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1
mGal at a spatial resolution of 50
km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28
km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2008.06.003</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1177 |
ispartof | Advances in space research, 2008-10, Vol.42 (8), p.1405-1413 |
issn | 0273-1177 1879-1948 |
language | eng |
recordid | cdi_proquest_miscellaneous_20942369 |
source | Elsevier ScienceDirect Journals |
subjects | LEO Lunar gravity field determination Moon PRARE-L Satellite-to-Satellite tracking |
title | Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20study%20for%20the%20determination%20of%20the%20lunar%20gravity%20field%20from%20PRARE-L%20tracking%20onboard%20the%20German%20LEO%20mission&rft.jtitle=Advances%20in%20space%20research&rft.au=Flechtner,%20Frank&rft.date=2008-10-15&rft.volume=42&rft.issue=8&rft.spage=1405&rft.epage=1413&rft.pages=1405-1413&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2008.06.003&rft_dat=%3Cproquest_cross%3E20942369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20942369&rft_id=info:pmid/&rft_els_id=S0273117708003499&rfr_iscdi=true |