Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission

A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in space research 2008-10, Vol.42 (8), p.1405-1413
Hauptverfasser: Flechtner, Frank, Neumayer, Karl Hans, Kusche, Jürgen, Schäfer, Wolfgang, Sohl, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1413
container_issue 8
container_start_page 1405
container_title Advances in space research
container_volume 42
creator Flechtner, Frank
Neumayer, Karl Hans
Kusche, Jürgen
Schäfer, Wolfgang
Sohl, Frank
description A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1 mGal at a spatial resolution of 50 km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28 km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system.
doi_str_mv 10.1016/j.asr.2008.06.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20942369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117708003499</els_id><sourcerecordid>20942369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a5651920c8fc815a12980a09433b945c3146f815a8631be127d2c88c55a8a5b23</originalsourceid><addsrcrecordid>eNp9UE1LwzAYDqLgnP4Abzl5a81HP1I8jTGnUJhMPYc0TWdmm8wkHezfm22ePb3wfPE-DwD3GKUY4eJxmwrvUoIQS1GRIkQvwASzskpwlbFLMEGkpAnGZXkNbrzfIoRJWaIJ2L_rYexF0NZAH8b2ADvrYPhSsFVBuUGbM2e7E9iPRji4cWKvQ5Rq1bewc3aAb-vZepHUMDghv7XZQGsaK1x7ci1jkDCwXqzgoL2PebfgqhO9V3d_dwo-nxcf85ekXi1f57M6kbTEIRF5keOKIMk6yXAuMKkYEqjKKG2qLJcUZ0V3JFhBcaNip5ZIxmQeEZE3hE7Bwzl35-zPqHzg8QGp-l4YZUfPScwitKiiEJ-F0lnvner4zulBuAPHiB8X5lseF-bHhTkqeFw4ep7OHhUb7LVy3EutjFStdkoG3lr9j_sX8UKDtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20942369</pqid></control><display><type>article</type><title>Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission</title><source>Elsevier ScienceDirect Journals</source><creator>Flechtner, Frank ; Neumayer, Karl Hans ; Kusche, Jürgen ; Schäfer, Wolfgang ; Sohl, Frank</creator><creatorcontrib>Flechtner, Frank ; Neumayer, Karl Hans ; Kusche, Jürgen ; Schäfer, Wolfgang ; Sohl, Frank</creatorcontrib><description>A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1 mGal at a spatial resolution of 50 km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28 km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2008.06.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>LEO ; Lunar gravity field determination ; Moon ; PRARE-L ; Satellite-to-Satellite tracking</subject><ispartof>Advances in space research, 2008-10, Vol.42 (8), p.1405-1413</ispartof><rights>2008 COSPAR</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a5651920c8fc815a12980a09433b945c3146f815a8631be127d2c88c55a8a5b23</citedby><cites>FETCH-LOGICAL-c371t-a5651920c8fc815a12980a09433b945c3146f815a8631be127d2c88c55a8a5b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0273117708003499$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Flechtner, Frank</creatorcontrib><creatorcontrib>Neumayer, Karl Hans</creatorcontrib><creatorcontrib>Kusche, Jürgen</creatorcontrib><creatorcontrib>Schäfer, Wolfgang</creatorcontrib><creatorcontrib>Sohl, Frank</creatorcontrib><title>Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission</title><title>Advances in space research</title><description>A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1 mGal at a spatial resolution of 50 km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28 km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system.</description><subject>LEO</subject><subject>Lunar gravity field determination</subject><subject>Moon</subject><subject>PRARE-L</subject><subject>Satellite-to-Satellite tracking</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LwzAYDqLgnP4Abzl5a81HP1I8jTGnUJhMPYc0TWdmm8wkHezfm22ePb3wfPE-DwD3GKUY4eJxmwrvUoIQS1GRIkQvwASzskpwlbFLMEGkpAnGZXkNbrzfIoRJWaIJ2L_rYexF0NZAH8b2ADvrYPhSsFVBuUGbM2e7E9iPRji4cWKvQ5Rq1bewc3aAb-vZepHUMDghv7XZQGsaK1x7ci1jkDCwXqzgoL2PebfgqhO9V3d_dwo-nxcf85ekXi1f57M6kbTEIRF5keOKIMk6yXAuMKkYEqjKKG2qLJcUZ0V3JFhBcaNip5ZIxmQeEZE3hE7Bwzl35-zPqHzg8QGp-l4YZUfPScwitKiiEJ-F0lnvner4zulBuAPHiB8X5lseF-bHhTkqeFw4ep7OHhUb7LVy3EutjFStdkoG3lr9j_sX8UKDtA</recordid><startdate>20081015</startdate><enddate>20081015</enddate><creator>Flechtner, Frank</creator><creator>Neumayer, Karl Hans</creator><creator>Kusche, Jürgen</creator><creator>Schäfer, Wolfgang</creator><creator>Sohl, Frank</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20081015</creationdate><title>Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission</title><author>Flechtner, Frank ; Neumayer, Karl Hans ; Kusche, Jürgen ; Schäfer, Wolfgang ; Sohl, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a5651920c8fc815a12980a09433b945c3146f815a8631be127d2c88c55a8a5b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>LEO</topic><topic>Lunar gravity field determination</topic><topic>Moon</topic><topic>PRARE-L</topic><topic>Satellite-to-Satellite tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flechtner, Frank</creatorcontrib><creatorcontrib>Neumayer, Karl Hans</creatorcontrib><creatorcontrib>Kusche, Jürgen</creatorcontrib><creatorcontrib>Schäfer, Wolfgang</creatorcontrib><creatorcontrib>Sohl, Frank</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flechtner, Frank</au><au>Neumayer, Karl Hans</au><au>Kusche, Jürgen</au><au>Schäfer, Wolfgang</au><au>Sohl, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission</atitle><jtitle>Advances in space research</jtitle><date>2008-10-15</date><risdate>2008</risdate><volume>42</volume><issue>8</issue><spage>1405</spage><epage>1413</epage><pages>1405-1413</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>A simulation study has been performed at GFZ Potsdam, which shows the anticipated improvement of the lunar gravity field model with respect to current (LP150Q model) or near-future (SELENE) knowledge in the framework of the planned German Lunar Explorations Orbiter (LEO) mission, based on PRARE-L (Precise Range And Range-rate Equipment – Lunar version) Satellite-to-Satellite (SST) and Satellite-Earth-Satellite (SEST) tracking observations. It is shown that the global mean error of the lunar gravity field can be reduced to less than 0.1 mGal at a spatial resolution of 50 km. In the spectral domain, this means a factor of 10 (long wavelengths) and some 100 (mid to short wavelengths) improvement as compared to predictions for SELENE or a factor of 1000 with respect to LP150Q. Furthermore, a higher spatial resolution of up to 28 km seems feasible and would correspond to a factor of 2–3 improvement of SELENE results. Moreover, PRARE-L is expected to derive the low-degree coefficients of the lunar gravity field with unprecedented accuracy. Considering long mission duration (at least 1 year is planned) this would allow for the first time a precise direct determination of the low-degree tidal Love numbers of the Moon and, in combination with high precision SEST, would provide an experimental basis to study relativistic effects such as the periselenium advance in the Earth–Moon system.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2008.06.003</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-1177
ispartof Advances in space research, 2008-10, Vol.42 (8), p.1405-1413
issn 0273-1177
1879-1948
language eng
recordid cdi_proquest_miscellaneous_20942369
source Elsevier ScienceDirect Journals
subjects LEO
Lunar gravity field determination
Moon
PRARE-L
Satellite-to-Satellite tracking
title Simulation study for the determination of the lunar gravity field from PRARE-L tracking onboard the German LEO mission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20study%20for%20the%20determination%20of%20the%20lunar%20gravity%20field%20from%20PRARE-L%20tracking%20onboard%20the%20German%20LEO%20mission&rft.jtitle=Advances%20in%20space%20research&rft.au=Flechtner,%20Frank&rft.date=2008-10-15&rft.volume=42&rft.issue=8&rft.spage=1405&rft.epage=1413&rft.pages=1405-1413&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2008.06.003&rft_dat=%3Cproquest_cross%3E20942369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20942369&rft_id=info:pmid/&rft_els_id=S0273117708003499&rfr_iscdi=true