Application of the finite difference heterogeneous multiscale method to the Richards' equation

This paper extends the finite difference heterogeneous multiscale method (FDHMM) to simulate transient unsaturated water flow problems in random porous media. The numerical method is based on the use of two different schemes for the original equation, at different grid levels which allows numerical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2008-07, Vol.44 (7), p.n/a
Hauptverfasser: Chen, Fulai, Ren, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Water resources research
container_volume 44
creator Chen, Fulai
Ren, Li
description This paper extends the finite difference heterogeneous multiscale method (FDHMM) to simulate transient unsaturated water flow problems in random porous media. The numerical method is based on the use of two different schemes for the original equation, at different grid levels which allows numerical results at a lower cost than solving the original equations. The main feature of FDHMM is that the necessary data for the macroscopic model are supplied by solving the microscopic model on a sparse spatial domain. The generated code is verified by applying the linearization model of the Richards' equation. Considering two different constitutive relationships, this method is applied to several test examples with different soil textures and boundary conditions. Both the Dirichlet and the periodic boundary conditions are considered for solving the local microscopic model when the water flow in heterogeneous unsaturated soils is simulated by FDHMM. The numerical experiments demonstrate that FDHMM can effectively simulate the transient unsaturated water flow in the specific soils. The numerical experiments also demonstrate that FDHMM can achieve accurate global mass balance and is a globally convergent algorithm, and the spatial correlation length of random coefficients under the specific standard deviation has relatively little influence on the accuracy of the method.
doi_str_mv 10.1029/2007WR006275
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_20937100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20937100</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4096-476e47a565b4b562089ed6f1a4990b8715458087edbafbff825dee7585efe0f23</originalsourceid><addsrcrecordid>eNp9kMtOwzAURC0EEuWx4wO8gg2B68SPeIkqKEgVSOW5wnKSa2pIm9Z2Bfw9pUWIFavZnDMaDSEHDE4Y5Po0B1CPIwCZK7FBekxznimtik3SA-BFxgqttslOjK8AjAupeuT5bDZrfW2T76a0czSNkTo_9Qlp453DgNMa6RgThu4Fp9gtIp0s2uRjbVukE0zjrqGpW4kjX49taOIRxfliVblHtpxtI-7_5C65vzi_619mw5vBVf9smFkOWmZcSeTKCikqXgmZQ6mxkY5ZrjVUpWKCixJKhU1lXeVcmYsGUYlSoENwebFLDte9s9DNFxiTmSwXYtva1WSTgy4UA1iCx2uwDl2MAZ2ZBT-x4dMwMN8nmr8nLvFijb_7Fj__Zc3jqD9ijHO5tLK15WPCj1_LhjcjVfGNXg_M0-2wrwYPwojiCzv9g4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20937100</pqid></control><display><type>article</type><title>Application of the finite difference heterogeneous multiscale method to the Richards' equation</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Chen, Fulai ; Ren, Li</creator><creatorcontrib>Chen, Fulai ; Ren, Li</creatorcontrib><description>This paper extends the finite difference heterogeneous multiscale method (FDHMM) to simulate transient unsaturated water flow problems in random porous media. The numerical method is based on the use of two different schemes for the original equation, at different grid levels which allows numerical results at a lower cost than solving the original equations. The main feature of FDHMM is that the necessary data for the macroscopic model are supplied by solving the microscopic model on a sparse spatial domain. The generated code is verified by applying the linearization model of the Richards' equation. Considering two different constitutive relationships, this method is applied to several test examples with different soil textures and boundary conditions. Both the Dirichlet and the periodic boundary conditions are considered for solving the local microscopic model when the water flow in heterogeneous unsaturated soils is simulated by FDHMM. The numerical experiments demonstrate that FDHMM can effectively simulate the transient unsaturated water flow in the specific soils. The numerical experiments also demonstrate that FDHMM can achieve accurate global mass balance and is a globally convergent algorithm, and the spatial correlation length of random coefficients under the specific standard deviation has relatively little influence on the accuracy of the method.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2007WR006275</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Artificial neural networks ; Bayesian model selection ; evidence estimation ; Markov chain Monte Carlo ; uncertainty ; water resources modeling</subject><ispartof>Water resources research, 2008-07, Vol.44 (7), p.n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4096-476e47a565b4b562089ed6f1a4990b8715458087edbafbff825dee7585efe0f23</citedby><cites>FETCH-LOGICAL-a4096-476e47a565b4b562089ed6f1a4990b8715458087edbafbff825dee7585efe0f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007WR006275$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007WR006275$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,11518,27928,27929,45578,45579,46472,46896</link.rule.ids></links><search><creatorcontrib>Chen, Fulai</creatorcontrib><creatorcontrib>Ren, Li</creatorcontrib><title>Application of the finite difference heterogeneous multiscale method to the Richards' equation</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>This paper extends the finite difference heterogeneous multiscale method (FDHMM) to simulate transient unsaturated water flow problems in random porous media. The numerical method is based on the use of two different schemes for the original equation, at different grid levels which allows numerical results at a lower cost than solving the original equations. The main feature of FDHMM is that the necessary data for the macroscopic model are supplied by solving the microscopic model on a sparse spatial domain. The generated code is verified by applying the linearization model of the Richards' equation. Considering two different constitutive relationships, this method is applied to several test examples with different soil textures and boundary conditions. Both the Dirichlet and the periodic boundary conditions are considered for solving the local microscopic model when the water flow in heterogeneous unsaturated soils is simulated by FDHMM. The numerical experiments demonstrate that FDHMM can effectively simulate the transient unsaturated water flow in the specific soils. The numerical experiments also demonstrate that FDHMM can achieve accurate global mass balance and is a globally convergent algorithm, and the spatial correlation length of random coefficients under the specific standard deviation has relatively little influence on the accuracy of the method.</description><subject>Artificial neural networks</subject><subject>Bayesian model selection</subject><subject>evidence estimation</subject><subject>Markov chain Monte Carlo</subject><subject>uncertainty</subject><subject>water resources modeling</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAURC0EEuWx4wO8gg2B68SPeIkqKEgVSOW5wnKSa2pIm9Z2Bfw9pUWIFavZnDMaDSEHDE4Y5Po0B1CPIwCZK7FBekxznimtik3SA-BFxgqttslOjK8AjAupeuT5bDZrfW2T76a0czSNkTo_9Qlp453DgNMa6RgThu4Fp9gtIp0s2uRjbVukE0zjrqGpW4kjX49taOIRxfliVblHtpxtI-7_5C65vzi_619mw5vBVf9smFkOWmZcSeTKCikqXgmZQ6mxkY5ZrjVUpWKCixJKhU1lXeVcmYsGUYlSoENwebFLDte9s9DNFxiTmSwXYtva1WSTgy4UA1iCx2uwDl2MAZ2ZBT-x4dMwMN8nmr8nLvFijb_7Fj__Zc3jqD9ijHO5tLK15WPCj1_LhjcjVfGNXg_M0-2wrwYPwojiCzv9g4g</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Chen, Fulai</creator><creator>Ren, Li</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope></search><sort><creationdate>200807</creationdate><title>Application of the finite difference heterogeneous multiscale method to the Richards' equation</title><author>Chen, Fulai ; Ren, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4096-476e47a565b4b562089ed6f1a4990b8715458087edbafbff825dee7585efe0f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Artificial neural networks</topic><topic>Bayesian model selection</topic><topic>evidence estimation</topic><topic>Markov chain Monte Carlo</topic><topic>uncertainty</topic><topic>water resources modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fulai</creatorcontrib><creatorcontrib>Ren, Li</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fulai</au><au>Ren, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the finite difference heterogeneous multiscale method to the Richards' equation</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2008-07</date><risdate>2008</risdate><volume>44</volume><issue>7</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>This paper extends the finite difference heterogeneous multiscale method (FDHMM) to simulate transient unsaturated water flow problems in random porous media. The numerical method is based on the use of two different schemes for the original equation, at different grid levels which allows numerical results at a lower cost than solving the original equations. The main feature of FDHMM is that the necessary data for the macroscopic model are supplied by solving the microscopic model on a sparse spatial domain. The generated code is verified by applying the linearization model of the Richards' equation. Considering two different constitutive relationships, this method is applied to several test examples with different soil textures and boundary conditions. Both the Dirichlet and the periodic boundary conditions are considered for solving the local microscopic model when the water flow in heterogeneous unsaturated soils is simulated by FDHMM. The numerical experiments demonstrate that FDHMM can effectively simulate the transient unsaturated water flow in the specific soils. The numerical experiments also demonstrate that FDHMM can achieve accurate global mass balance and is a globally convergent algorithm, and the spatial correlation length of random coefficients under the specific standard deviation has relatively little influence on the accuracy of the method.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007WR006275</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2008-07, Vol.44 (7), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_proquest_miscellaneous_20937100
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Bayesian model selection
evidence estimation
Markov chain Monte Carlo
uncertainty
water resources modeling
title Application of the finite difference heterogeneous multiscale method to the Richards' equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T08%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20finite%20difference%20heterogeneous%20multiscale%20method%20to%20the%20Richards'%20equation&rft.jtitle=Water%20resources%20research&rft.au=Chen,%20Fulai&rft.date=2008-07&rft.volume=44&rft.issue=7&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2007WR006275&rft_dat=%3Cproquest_cross%3E20937100%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20937100&rft_id=info:pmid/&rfr_iscdi=true