Hippocampal place cell assemblies are speed-controlled oscillators

The phase of spikes of hippocampal pyramidal cells relative to the local field {theta} oscillation shifts forward ("phase precession") over a full {theta} cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-05, Vol.104 (19), p.8149-8154
Hauptverfasser: Geisler, Caroline, Robbe, David, Zugaro, Michaël, Sirota, Anton, Buzsáki, György
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8154
container_issue 19
container_start_page 8149
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Geisler, Caroline
Robbe, David
Zugaro, Michaël
Sirota, Anton
Buzsáki, György
description The phase of spikes of hippocampal pyramidal cells relative to the local field {theta} oscillation shifts forward ("phase precession") over a full {theta} cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the phase-distance relationship is likely to be important for coordinated activity of hippocampal cells and space coding, yet the mechanism responsible for it is not known. Here we show that at faster running speeds place cells are active for fewer {theta} cycles but oscillate at a higher frequency and emit more spikes per cycle. As a result, the phase shift of spikes from cycle to cycle (i.e., temporal precession slope) is faster, yet spatial-phase precession stays unchanged. Interneurons can also show transient-phase precession and contribute to the formation of coherently precessing assemblies. We hypothesize that the speed-correlated acceleration of place cell assembly oscillation is responsible for the phase-distance invariance of hippocampal place cells.
doi_str_mv 10.1073/pnas.0610121104
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20920685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25427632</jstor_id><sourcerecordid>25427632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c619t-422a5923637a4f36a0f5b96b096c89a6d94149b709a7c2fd39891126a10ec2e23</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modq2ePamDh4KHad9LMvlxKdRSXWHBg_YcMplMO0tmMya7Bf97M-zS1V4kh0Dyed_35fsl5C3COYJkF9PG5nMQCEgRgT8jCwSNteAanpMFAJW14pSfkFc5rwFANwpekhOUXIICtSCfl8M0RWfHyYZqCtb5yvkQKpuzH9sw-FzZ5Ks8ed_VLm62KYbguypmN4RgtzHl1-RFb0P2bw73Kbn9cvPzelmvvn_9dn21qp1Ava05pbbRlAkmLe-ZsNA3rRYtaOGUtqLTHLluJWgrHe07ppVGpMIieEc9Zafkcq877drRd84XMzaYKQ2jTb9NtIP592cz3Ju7-GBQSdEoUQQ-7QXun4wtr1ZmfgNotGZSPWBhzw7LUvy183lrxiHPydiNj7tsJHCpGKr_ghQ0BaGaAn58Aq7jLm1KYoVBVo6YLV7sIZdizsn3jz4RzNy4mRs3x8bLxPu_Uznyh4oL8OEAzJNHOW5QG1UiL8S7PbHOpc9HhDacSsHoUaG30di7NGRz-2P2DCClxNLoHxnwwos</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201313166</pqid></control><display><type>article</type><title>Hippocampal place cell assemblies are speed-controlled oscillators</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Geisler, Caroline ; Robbe, David ; Zugaro, Michaël ; Sirota, Anton ; Buzsáki, György</creator><creatorcontrib>Geisler, Caroline ; Robbe, David ; Zugaro, Michaël ; Sirota, Anton ; Buzsáki, György</creatorcontrib><description>The phase of spikes of hippocampal pyramidal cells relative to the local field {theta} oscillation shifts forward ("phase precession") over a full {theta} cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the phase-distance relationship is likely to be important for coordinated activity of hippocampal cells and space coding, yet the mechanism responsible for it is not known. Here we show that at faster running speeds place cells are active for fewer {theta} cycles but oscillate at a higher frequency and emit more spikes per cycle. As a result, the phase shift of spikes from cycle to cycle (i.e., temporal precession slope) is faster, yet spatial-phase precession stays unchanged. Interneurons can also show transient-phase precession and contribute to the formation of coherently precessing assemblies. We hypothesize that the speed-correlated acceleration of place cell assembly oscillation is responsible for the phase-distance invariance of hippocampal place cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0610121104</identifier><identifier>PMID: 17470808</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Average speed ; Biological Sciences ; Brain ; Frequency shift ; Hippocampus ; Hippocampus - cytology ; Hippocampus - physiology ; Interneurons ; Interneurons - physiology ; Life Sciences ; Male ; Neurology ; Neurons ; Neurons - physiology ; Neurons and Cognition ; Neuroscience ; Oscillation ; Oscillators ; Precession ; Pyramidal Cells ; Pyramidal Cells - physiology ; Rats ; Rats, Long-Evans ; Running ; Running speed ; Theta Rhythm ; Velocity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (19), p.8149-8154</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 8, 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c619t-422a5923637a4f36a0f5b96b096c89a6d94149b709a7c2fd39891126a10ec2e23</citedby><cites>FETCH-LOGICAL-c619t-422a5923637a4f36a0f5b96b096c89a6d94149b709a7c2fd39891126a10ec2e23</cites><orcidid>0000-0002-9450-0553 ; 0000-0002-6199-2635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25427632$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25427632$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17470808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00599378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Geisler, Caroline</creatorcontrib><creatorcontrib>Robbe, David</creatorcontrib><creatorcontrib>Zugaro, Michaël</creatorcontrib><creatorcontrib>Sirota, Anton</creatorcontrib><creatorcontrib>Buzsáki, György</creatorcontrib><title>Hippocampal place cell assemblies are speed-controlled oscillators</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The phase of spikes of hippocampal pyramidal cells relative to the local field {theta} oscillation shifts forward ("phase precession") over a full {theta} cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the phase-distance relationship is likely to be important for coordinated activity of hippocampal cells and space coding, yet the mechanism responsible for it is not known. Here we show that at faster running speeds place cells are active for fewer {theta} cycles but oscillate at a higher frequency and emit more spikes per cycle. As a result, the phase shift of spikes from cycle to cycle (i.e., temporal precession slope) is faster, yet spatial-phase precession stays unchanged. Interneurons can also show transient-phase precession and contribute to the formation of coherently precessing assemblies. We hypothesize that the speed-correlated acceleration of place cell assembly oscillation is responsible for the phase-distance invariance of hippocampal place cells.</description><subject>Animals</subject><subject>Average speed</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Frequency shift</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><subject>Oscillation</subject><subject>Oscillators</subject><subject>Precession</subject><subject>Pyramidal Cells</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Running</subject><subject>Running speed</subject><subject>Theta Rhythm</subject><subject>Velocity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4Modq2ePamDh4KHad9LMvlxKdRSXWHBg_YcMplMO0tmMya7Bf97M-zS1V4kh0Dyed_35fsl5C3COYJkF9PG5nMQCEgRgT8jCwSNteAanpMFAJW14pSfkFc5rwFANwpekhOUXIICtSCfl8M0RWfHyYZqCtb5yvkQKpuzH9sw-FzZ5Ks8ed_VLm62KYbguypmN4RgtzHl1-RFb0P2bw73Kbn9cvPzelmvvn_9dn21qp1Ava05pbbRlAkmLe-ZsNA3rRYtaOGUtqLTHLluJWgrHe07ppVGpMIieEc9Zafkcq877drRd84XMzaYKQ2jTb9NtIP592cz3Ju7-GBQSdEoUQQ-7QXun4wtr1ZmfgNotGZSPWBhzw7LUvy183lrxiHPydiNj7tsJHCpGKr_ghQ0BaGaAn58Aq7jLm1KYoVBVo6YLV7sIZdizsn3jz4RzNy4mRs3x8bLxPu_Uznyh4oL8OEAzJNHOW5QG1UiL8S7PbHOpc9HhDacSsHoUaG30di7NGRz-2P2DCClxNLoHxnwwos</recordid><startdate>20070508</startdate><enddate>20070508</enddate><creator>Geisler, Caroline</creator><creator>Robbe, David</creator><creator>Zugaro, Michaël</creator><creator>Sirota, Anton</creator><creator>Buzsáki, György</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9450-0553</orcidid><orcidid>https://orcid.org/0000-0002-6199-2635</orcidid></search><sort><creationdate>20070508</creationdate><title>Hippocampal place cell assemblies are speed-controlled oscillators</title><author>Geisler, Caroline ; Robbe, David ; Zugaro, Michaël ; Sirota, Anton ; Buzsáki, György</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c619t-422a5923637a4f36a0f5b96b096c89a6d94149b709a7c2fd39891126a10ec2e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Average speed</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Frequency shift</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><topic>Oscillation</topic><topic>Oscillators</topic><topic>Precession</topic><topic>Pyramidal Cells</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Running</topic><topic>Running speed</topic><topic>Theta Rhythm</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geisler, Caroline</creatorcontrib><creatorcontrib>Robbe, David</creatorcontrib><creatorcontrib>Zugaro, Michaël</creatorcontrib><creatorcontrib>Sirota, Anton</creatorcontrib><creatorcontrib>Buzsáki, György</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geisler, Caroline</au><au>Robbe, David</au><au>Zugaro, Michaël</au><au>Sirota, Anton</au><au>Buzsáki, György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hippocampal place cell assemblies are speed-controlled oscillators</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-05-08</date><risdate>2007</risdate><volume>104</volume><issue>19</issue><spage>8149</spage><epage>8154</epage><pages>8149-8154</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The phase of spikes of hippocampal pyramidal cells relative to the local field {theta} oscillation shifts forward ("phase precession") over a full {theta} cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the phase-distance relationship is likely to be important for coordinated activity of hippocampal cells and space coding, yet the mechanism responsible for it is not known. Here we show that at faster running speeds place cells are active for fewer {theta} cycles but oscillate at a higher frequency and emit more spikes per cycle. As a result, the phase shift of spikes from cycle to cycle (i.e., temporal precession slope) is faster, yet spatial-phase precession stays unchanged. Interneurons can also show transient-phase precession and contribute to the formation of coherently precessing assemblies. We hypothesize that the speed-correlated acceleration of place cell assembly oscillation is responsible for the phase-distance invariance of hippocampal place cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17470808</pmid><doi>10.1073/pnas.0610121104</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9450-0553</orcidid><orcidid>https://orcid.org/0000-0002-6199-2635</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (19), p.8149-8154
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_20920685
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Average speed
Biological Sciences
Brain
Frequency shift
Hippocampus
Hippocampus - cytology
Hippocampus - physiology
Interneurons
Interneurons - physiology
Life Sciences
Male
Neurology
Neurons
Neurons - physiology
Neurons and Cognition
Neuroscience
Oscillation
Oscillators
Precession
Pyramidal Cells
Pyramidal Cells - physiology
Rats
Rats, Long-Evans
Running
Running speed
Theta Rhythm
Velocity
title Hippocampal place cell assemblies are speed-controlled oscillators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hippocampal%20place%20cell%20assemblies%20are%20speed-controlled%20oscillators&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Geisler,%20Caroline&rft.date=2007-05-08&rft.volume=104&rft.issue=19&rft.spage=8149&rft.epage=8154&rft.pages=8149-8154&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0610121104&rft_dat=%3Cjstor_proqu%3E25427632%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201313166&rft_id=info:pmid/17470808&rft_jstor_id=25427632&rfr_iscdi=true