Hippocampal place cell assemblies are speed-controlled oscillators
The phase of spikes of hippocampal pyramidal cells relative to the local field {theta} oscillation shifts forward ("phase precession") over a full {theta} cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-05, Vol.104 (19), p.8149-8154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8154 |
---|---|
container_issue | 19 |
container_start_page | 8149 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Geisler, Caroline Robbe, David Zugaro, Michaël Sirota, Anton Buzsáki, György |
description | The phase of spikes of hippocampal pyramidal cells relative to the local field {theta} oscillation shifts forward ("phase precession") over a full {theta} cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the phase-distance relationship is likely to be important for coordinated activity of hippocampal cells and space coding, yet the mechanism responsible for it is not known. Here we show that at faster running speeds place cells are active for fewer {theta} cycles but oscillate at a higher frequency and emit more spikes per cycle. As a result, the phase shift of spikes from cycle to cycle (i.e., temporal precession slope) is faster, yet spatial-phase precession stays unchanged. Interneurons can also show transient-phase precession and contribute to the formation of coherently precessing assemblies. We hypothesize that the speed-correlated acceleration of place cell assembly oscillation is responsible for the phase-distance invariance of hippocampal place cells. |
doi_str_mv | 10.1073/pnas.0610121104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_20920685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25427632</jstor_id><sourcerecordid>25427632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c619t-422a5923637a4f36a0f5b96b096c89a6d94149b709a7c2fd39891126a10ec2e23</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modq2ePamDh4KHad9LMvlxKdRSXWHBg_YcMplMO0tmMya7Bf97M-zS1V4kh0Dyed_35fsl5C3COYJkF9PG5nMQCEgRgT8jCwSNteAanpMFAJW14pSfkFc5rwFANwpekhOUXIICtSCfl8M0RWfHyYZqCtb5yvkQKpuzH9sw-FzZ5Ks8ed_VLm62KYbguypmN4RgtzHl1-RFb0P2bw73Kbn9cvPzelmvvn_9dn21qp1Ava05pbbRlAkmLe-ZsNA3rRYtaOGUtqLTHLluJWgrHe07ppVGpMIieEc9Zafkcq877drRd84XMzaYKQ2jTb9NtIP592cz3Ju7-GBQSdEoUQQ-7QXun4wtr1ZmfgNotGZSPWBhzw7LUvy183lrxiHPydiNj7tsJHCpGKr_ghQ0BaGaAn58Aq7jLm1KYoVBVo6YLV7sIZdizsn3jz4RzNy4mRs3x8bLxPu_Uznyh4oL8OEAzJNHOW5QG1UiL8S7PbHOpc9HhDacSsHoUaG30di7NGRz-2P2DCClxNLoHxnwwos</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201313166</pqid></control><display><type>article</type><title>Hippocampal place cell assemblies are speed-controlled oscillators</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Geisler, Caroline ; Robbe, David ; Zugaro, Michaël ; Sirota, Anton ; Buzsáki, György</creator><creatorcontrib>Geisler, Caroline ; Robbe, David ; Zugaro, Michaël ; Sirota, Anton ; Buzsáki, György</creatorcontrib><description>The phase of spikes of hippocampal pyramidal cells relative to the local field {theta} oscillation shifts forward ("phase precession") over a full {theta} cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the phase-distance relationship is likely to be important for coordinated activity of hippocampal cells and space coding, yet the mechanism responsible for it is not known. Here we show that at faster running speeds place cells are active for fewer {theta} cycles but oscillate at a higher frequency and emit more spikes per cycle. As a result, the phase shift of spikes from cycle to cycle (i.e., temporal precession slope) is faster, yet spatial-phase precession stays unchanged. Interneurons can also show transient-phase precession and contribute to the formation of coherently precessing assemblies. We hypothesize that the speed-correlated acceleration of place cell assembly oscillation is responsible for the phase-distance invariance of hippocampal place cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0610121104</identifier><identifier>PMID: 17470808</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Average speed ; Biological Sciences ; Brain ; Frequency shift ; Hippocampus ; Hippocampus - cytology ; Hippocampus - physiology ; Interneurons ; Interneurons - physiology ; Life Sciences ; Male ; Neurology ; Neurons ; Neurons - physiology ; Neurons and Cognition ; Neuroscience ; Oscillation ; Oscillators ; Precession ; Pyramidal Cells ; Pyramidal Cells - physiology ; Rats ; Rats, Long-Evans ; Running ; Running speed ; Theta Rhythm ; Velocity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (19), p.8149-8154</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences May 8, 2007</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c619t-422a5923637a4f36a0f5b96b096c89a6d94149b709a7c2fd39891126a10ec2e23</citedby><cites>FETCH-LOGICAL-c619t-422a5923637a4f36a0f5b96b096c89a6d94149b709a7c2fd39891126a10ec2e23</cites><orcidid>0000-0002-9450-0553 ; 0000-0002-6199-2635</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25427632$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25427632$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27929,27930,53796,53798,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17470808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00599378$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Geisler, Caroline</creatorcontrib><creatorcontrib>Robbe, David</creatorcontrib><creatorcontrib>Zugaro, Michaël</creatorcontrib><creatorcontrib>Sirota, Anton</creatorcontrib><creatorcontrib>Buzsáki, György</creatorcontrib><title>Hippocampal place cell assemblies are speed-controlled oscillators</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The phase of spikes of hippocampal pyramidal cells relative to the local field {theta} oscillation shifts forward ("phase precession") over a full {theta} cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the phase-distance relationship is likely to be important for coordinated activity of hippocampal cells and space coding, yet the mechanism responsible for it is not known. Here we show that at faster running speeds place cells are active for fewer {theta} cycles but oscillate at a higher frequency and emit more spikes per cycle. As a result, the phase shift of spikes from cycle to cycle (i.e., temporal precession slope) is faster, yet spatial-phase precession stays unchanged. Interneurons can also show transient-phase precession and contribute to the formation of coherently precessing assemblies. We hypothesize that the speed-correlated acceleration of place cell assembly oscillation is responsible for the phase-distance invariance of hippocampal place cells.</description><subject>Animals</subject><subject>Average speed</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Frequency shift</subject><subject>Hippocampus</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Interneurons</subject><subject>Interneurons - physiology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Neurology</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurons and Cognition</subject><subject>Neuroscience</subject><subject>Oscillation</subject><subject>Oscillators</subject><subject>Precession</subject><subject>Pyramidal Cells</subject><subject>Pyramidal Cells - physiology</subject><subject>Rats</subject><subject>Rats, Long-Evans</subject><subject>Running</subject><subject>Running speed</subject><subject>Theta Rhythm</subject><subject>Velocity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4Modq2ePamDh4KHad9LMvlxKdRSXWHBg_YcMplMO0tmMya7Bf97M-zS1V4kh0Dyed_35fsl5C3COYJkF9PG5nMQCEgRgT8jCwSNteAanpMFAJW14pSfkFc5rwFANwpekhOUXIICtSCfl8M0RWfHyYZqCtb5yvkQKpuzH9sw-FzZ5Ks8ed_VLm62KYbguypmN4RgtzHl1-RFb0P2bw73Kbn9cvPzelmvvn_9dn21qp1Ava05pbbRlAkmLe-ZsNA3rRYtaOGUtqLTHLluJWgrHe07ppVGpMIieEc9Zafkcq877drRd84XMzaYKQ2jTb9NtIP592cz3Ju7-GBQSdEoUQQ-7QXun4wtr1ZmfgNotGZSPWBhzw7LUvy183lrxiHPydiNj7tsJHCpGKr_ghQ0BaGaAn58Aq7jLm1KYoVBVo6YLV7sIZdizsn3jz4RzNy4mRs3x8bLxPu_Uznyh4oL8OEAzJNHOW5QG1UiL8S7PbHOpc9HhDacSsHoUaG30di7NGRz-2P2DCClxNLoHxnwwos</recordid><startdate>20070508</startdate><enddate>20070508</enddate><creator>Geisler, Caroline</creator><creator>Robbe, David</creator><creator>Zugaro, Michaël</creator><creator>Sirota, Anton</creator><creator>Buzsáki, György</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9450-0553</orcidid><orcidid>https://orcid.org/0000-0002-6199-2635</orcidid></search><sort><creationdate>20070508</creationdate><title>Hippocampal place cell assemblies are speed-controlled oscillators</title><author>Geisler, Caroline ; Robbe, David ; Zugaro, Michaël ; Sirota, Anton ; Buzsáki, György</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c619t-422a5923637a4f36a0f5b96b096c89a6d94149b709a7c2fd39891126a10ec2e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Average speed</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Frequency shift</topic><topic>Hippocampus</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Interneurons</topic><topic>Interneurons - physiology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Neurology</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurons and Cognition</topic><topic>Neuroscience</topic><topic>Oscillation</topic><topic>Oscillators</topic><topic>Precession</topic><topic>Pyramidal Cells</topic><topic>Pyramidal Cells - physiology</topic><topic>Rats</topic><topic>Rats, Long-Evans</topic><topic>Running</topic><topic>Running speed</topic><topic>Theta Rhythm</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geisler, Caroline</creatorcontrib><creatorcontrib>Robbe, David</creatorcontrib><creatorcontrib>Zugaro, Michaël</creatorcontrib><creatorcontrib>Sirota, Anton</creatorcontrib><creatorcontrib>Buzsáki, György</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geisler, Caroline</au><au>Robbe, David</au><au>Zugaro, Michaël</au><au>Sirota, Anton</au><au>Buzsáki, György</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hippocampal place cell assemblies are speed-controlled oscillators</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-05-08</date><risdate>2007</risdate><volume>104</volume><issue>19</issue><spage>8149</spage><epage>8154</epage><pages>8149-8154</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The phase of spikes of hippocampal pyramidal cells relative to the local field {theta} oscillation shifts forward ("phase precession") over a full {theta} cycle as the animal crosses the cell's receptive field ("place field"). The linear relationship between the phase of the spikes and the travel distance within the place field is independent of the animal's running speed. This invariance of the phase-distance relationship is likely to be important for coordinated activity of hippocampal cells and space coding, yet the mechanism responsible for it is not known. Here we show that at faster running speeds place cells are active for fewer {theta} cycles but oscillate at a higher frequency and emit more spikes per cycle. As a result, the phase shift of spikes from cycle to cycle (i.e., temporal precession slope) is faster, yet spatial-phase precession stays unchanged. Interneurons can also show transient-phase precession and contribute to the formation of coherently precessing assemblies. We hypothesize that the speed-correlated acceleration of place cell assembly oscillation is responsible for the phase-distance invariance of hippocampal place cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17470808</pmid><doi>10.1073/pnas.0610121104</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9450-0553</orcidid><orcidid>https://orcid.org/0000-0002-6199-2635</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-05, Vol.104 (19), p.8149-8154 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_20920685 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Average speed Biological Sciences Brain Frequency shift Hippocampus Hippocampus - cytology Hippocampus - physiology Interneurons Interneurons - physiology Life Sciences Male Neurology Neurons Neurons - physiology Neurons and Cognition Neuroscience Oscillation Oscillators Precession Pyramidal Cells Pyramidal Cells - physiology Rats Rats, Long-Evans Running Running speed Theta Rhythm Velocity |
title | Hippocampal place cell assemblies are speed-controlled oscillators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T23%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hippocampal%20place%20cell%20assemblies%20are%20speed-controlled%20oscillators&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Geisler,%20Caroline&rft.date=2007-05-08&rft.volume=104&rft.issue=19&rft.spage=8149&rft.epage=8154&rft.pages=8149-8154&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0610121104&rft_dat=%3Cjstor_proqu%3E25427632%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201313166&rft_id=info:pmid/17470808&rft_jstor_id=25427632&rfr_iscdi=true |