Numerical methods for low-dose EDS tomography

•We propose to combine different advanced numerical methods in one algorithmic recipe for EDS-STEM tomographic reconstruction.•Combining the methods facilitates tailoring the algorithm for specific samples and datasets.•Compared to using these methods separately, tailored combined recipes improve th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2018-11, Vol.194, p.133-142
Hauptverfasser: Zhong, Zhichao, Palenstijn, Willem Jan, Viganò, Nicola Roberto, Batenburg, K. Joost
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue
container_start_page 133
container_title Ultramicroscopy
container_volume 194
creator Zhong, Zhichao
Palenstijn, Willem Jan
Viganò, Nicola Roberto
Batenburg, K. Joost
description •We propose to combine different advanced numerical methods in one algorithmic recipe for EDS-STEM tomographic reconstruction.•Combining the methods facilitates tailoring the algorithm for specific samples and datasets.•Compared to using these methods separately, tailored combined recipes improve the accuracy of reconstructions from limited data. Energy-dispersive X-ray spectroscopic (EDS) tomography is a powerful three-dimensional (3D) imaging technique for characterizing the chemical composition and structure of nanomaterials. However, the accuracy and resolution are typically hampered by the limited number of tilt images that can be measured and the low signal-to-noise ratios (SNRs) of the energy-resolved tilt images. Various sophisticated reconstruction algorithms have been proposed for specific types of samples and imaging conditions, yet deciding on which algorithm to use for each new case remains a complex problem. In this paper, we propose to tailor the reconstruction algorithm for EDS tomography in three aspects: (1) model the reconstruction problem based on an accurate assumption of the data statistics; (2) regularize the reconstruction to incorporate prior knowledge; (3) apply bimodal tomography to augment the EDS data with a high-SNR modality. Methods for the three aspects can be combined in one reconstruction procedure as three modules. Therefore, a reconstruction algorithm can be constructed as a ‘recipe’. We also provide guidelines for preparing the recipe based on conditions and assumptions for the data. We investigate the effects of different recipes on both simulated data and real experimental data. The results show that the preferred recipe depends on both acquisition conditions and sample properties, and that the image quality can be enhanced using a properly tailored recipe.
doi_str_mv 10.1016/j.ultramic.2018.08.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2091823907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399118302286</els_id><sourcerecordid>2091823907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-6423da9501bb555d7e6bd6cb508ae0a0ed3ee3e3130265c843241294f421ae013</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EoqXwF6ocuSSsH3ndQKU8pAoOwNly7A1NldTFTkD997hqyxVppL18s7M7hEwpJBRodrNKhrZ3qmt0woAWCQQBPyFjWuRlzHLGT8kYOIiYlyUdkQvvVwBAQRTnZMSBcsiZGJP4ZejQNVq1UYf90hof1dZFrf2JjfUYze_fot529tOpzXJ7Sc5q1Xq8OswJ-XiYv8-e4sXr4_PsbhFrQbM-zgTjRpUp0KpK09TkmFUm01UKhUJQgIYjcuThCJaluhCcCcpKUQtGA0D5hFzv926c_RrQ97JrvMa2VWu0g5cMSlowXkIe0GyPame9d1jLjWs65baSgtxVJVfyWJXcVSUhCHgwTg8ZQ9Wh-bMduwnA7R7A8Ol3g0563eBao2kc6l4a2_yX8QtHaHvv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091823907</pqid></control><display><type>article</type><title>Numerical methods for low-dose EDS tomography</title><source>Elsevier ScienceDirect Journals</source><creator>Zhong, Zhichao ; Palenstijn, Willem Jan ; Viganò, Nicola Roberto ; Batenburg, K. Joost</creator><creatorcontrib>Zhong, Zhichao ; Palenstijn, Willem Jan ; Viganò, Nicola Roberto ; Batenburg, K. Joost</creatorcontrib><description>•We propose to combine different advanced numerical methods in one algorithmic recipe for EDS-STEM tomographic reconstruction.•Combining the methods facilitates tailoring the algorithm for specific samples and datasets.•Compared to using these methods separately, tailored combined recipes improve the accuracy of reconstructions from limited data. Energy-dispersive X-ray spectroscopic (EDS) tomography is a powerful three-dimensional (3D) imaging technique for characterizing the chemical composition and structure of nanomaterials. However, the accuracy and resolution are typically hampered by the limited number of tilt images that can be measured and the low signal-to-noise ratios (SNRs) of the energy-resolved tilt images. Various sophisticated reconstruction algorithms have been proposed for specific types of samples and imaging conditions, yet deciding on which algorithm to use for each new case remains a complex problem. In this paper, we propose to tailor the reconstruction algorithm for EDS tomography in three aspects: (1) model the reconstruction problem based on an accurate assumption of the data statistics; (2) regularize the reconstruction to incorporate prior knowledge; (3) apply bimodal tomography to augment the EDS data with a high-SNR modality. Methods for the three aspects can be combined in one reconstruction procedure as three modules. Therefore, a reconstruction algorithm can be constructed as a ‘recipe’. We also provide guidelines for preparing the recipe based on conditions and assumptions for the data. We investigate the effects of different recipes on both simulated data and real experimental data. The results show that the preferred recipe depends on both acquisition conditions and sample properties, and that the image quality can be enhanced using a properly tailored recipe.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2018.08.003</identifier><identifier>PMID: 30130724</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><ispartof>Ultramicroscopy, 2018-11, Vol.194, p.133-142</ispartof><rights>2018</rights><rights>Copyright © 2018. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-6423da9501bb555d7e6bd6cb508ae0a0ed3ee3e3130265c843241294f421ae013</citedby><cites>FETCH-LOGICAL-c416t-6423da9501bb555d7e6bd6cb508ae0a0ed3ee3e3130265c843241294f421ae013</cites><orcidid>0000-0003-1704-5574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultramic.2018.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30130724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Zhichao</creatorcontrib><creatorcontrib>Palenstijn, Willem Jan</creatorcontrib><creatorcontrib>Viganò, Nicola Roberto</creatorcontrib><creatorcontrib>Batenburg, K. Joost</creatorcontrib><title>Numerical methods for low-dose EDS tomography</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>•We propose to combine different advanced numerical methods in one algorithmic recipe for EDS-STEM tomographic reconstruction.•Combining the methods facilitates tailoring the algorithm for specific samples and datasets.•Compared to using these methods separately, tailored combined recipes improve the accuracy of reconstructions from limited data. Energy-dispersive X-ray spectroscopic (EDS) tomography is a powerful three-dimensional (3D) imaging technique for characterizing the chemical composition and structure of nanomaterials. However, the accuracy and resolution are typically hampered by the limited number of tilt images that can be measured and the low signal-to-noise ratios (SNRs) of the energy-resolved tilt images. Various sophisticated reconstruction algorithms have been proposed for specific types of samples and imaging conditions, yet deciding on which algorithm to use for each new case remains a complex problem. In this paper, we propose to tailor the reconstruction algorithm for EDS tomography in three aspects: (1) model the reconstruction problem based on an accurate assumption of the data statistics; (2) regularize the reconstruction to incorporate prior knowledge; (3) apply bimodal tomography to augment the EDS data with a high-SNR modality. Methods for the three aspects can be combined in one reconstruction procedure as three modules. Therefore, a reconstruction algorithm can be constructed as a ‘recipe’. We also provide guidelines for preparing the recipe based on conditions and assumptions for the data. We investigate the effects of different recipes on both simulated data and real experimental data. The results show that the preferred recipe depends on both acquisition conditions and sample properties, and that the image quality can be enhanced using a properly tailored recipe.</description><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EoqXwF6ocuSSsH3ndQKU8pAoOwNly7A1NldTFTkD997hqyxVppL18s7M7hEwpJBRodrNKhrZ3qmt0woAWCQQBPyFjWuRlzHLGT8kYOIiYlyUdkQvvVwBAQRTnZMSBcsiZGJP4ZejQNVq1UYf90hof1dZFrf2JjfUYze_fot529tOpzXJ7Sc5q1Xq8OswJ-XiYv8-e4sXr4_PsbhFrQbM-zgTjRpUp0KpK09TkmFUm01UKhUJQgIYjcuThCJaluhCcCcpKUQtGA0D5hFzv926c_RrQ97JrvMa2VWu0g5cMSlowXkIe0GyPame9d1jLjWs65baSgtxVJVfyWJXcVSUhCHgwTg8ZQ9Wh-bMduwnA7R7A8Ol3g0563eBao2kc6l4a2_yX8QtHaHvv</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Zhong, Zhichao</creator><creator>Palenstijn, Willem Jan</creator><creator>Viganò, Nicola Roberto</creator><creator>Batenburg, K. Joost</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1704-5574</orcidid></search><sort><creationdate>201811</creationdate><title>Numerical methods for low-dose EDS tomography</title><author>Zhong, Zhichao ; Palenstijn, Willem Jan ; Viganò, Nicola Roberto ; Batenburg, K. Joost</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-6423da9501bb555d7e6bd6cb508ae0a0ed3ee3e3130265c843241294f421ae013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Zhichao</creatorcontrib><creatorcontrib>Palenstijn, Willem Jan</creatorcontrib><creatorcontrib>Viganò, Nicola Roberto</creatorcontrib><creatorcontrib>Batenburg, K. Joost</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Zhichao</au><au>Palenstijn, Willem Jan</au><au>Viganò, Nicola Roberto</au><au>Batenburg, K. Joost</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical methods for low-dose EDS tomography</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2018-11</date><risdate>2018</risdate><volume>194</volume><spage>133</spage><epage>142</epage><pages>133-142</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>•We propose to combine different advanced numerical methods in one algorithmic recipe for EDS-STEM tomographic reconstruction.•Combining the methods facilitates tailoring the algorithm for specific samples and datasets.•Compared to using these methods separately, tailored combined recipes improve the accuracy of reconstructions from limited data. Energy-dispersive X-ray spectroscopic (EDS) tomography is a powerful three-dimensional (3D) imaging technique for characterizing the chemical composition and structure of nanomaterials. However, the accuracy and resolution are typically hampered by the limited number of tilt images that can be measured and the low signal-to-noise ratios (SNRs) of the energy-resolved tilt images. Various sophisticated reconstruction algorithms have been proposed for specific types of samples and imaging conditions, yet deciding on which algorithm to use for each new case remains a complex problem. In this paper, we propose to tailor the reconstruction algorithm for EDS tomography in three aspects: (1) model the reconstruction problem based on an accurate assumption of the data statistics; (2) regularize the reconstruction to incorporate prior knowledge; (3) apply bimodal tomography to augment the EDS data with a high-SNR modality. Methods for the three aspects can be combined in one reconstruction procedure as three modules. Therefore, a reconstruction algorithm can be constructed as a ‘recipe’. We also provide guidelines for preparing the recipe based on conditions and assumptions for the data. We investigate the effects of different recipes on both simulated data and real experimental data. The results show that the preferred recipe depends on both acquisition conditions and sample properties, and that the image quality can be enhanced using a properly tailored recipe.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>30130724</pmid><doi>10.1016/j.ultramic.2018.08.003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1704-5574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2018-11, Vol.194, p.133-142
issn 0304-3991
1879-2723
language eng
recordid cdi_proquest_miscellaneous_2091823907
source Elsevier ScienceDirect Journals
title Numerical methods for low-dose EDS tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20methods%20for%20low-dose%20EDS%20tomography&rft.jtitle=Ultramicroscopy&rft.au=Zhong,%20Zhichao&rft.date=2018-11&rft.volume=194&rft.spage=133&rft.epage=142&rft.pages=133-142&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2018.08.003&rft_dat=%3Cproquest_cross%3E2091823907%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091823907&rft_id=info:pmid/30130724&rft_els_id=S0304399118302286&rfr_iscdi=true