Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm

A laser-based spectrometer exploiting a novel Kagome-type hollow core photonic crystal fiber, which serves as a gas cell is demonstrated. Low attenuation of this silica-based fiber in the 3.4 µm wavelength region enables accessing strong, fundamental transitions of methane, which was used as a targe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2018-08, Vol.26 (17), p.21843-21848
Hauptverfasser: Nikodem, Michał, Krzempek, Karol, Dudzik, Grzegorz, Abramski, Krzysztof
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21848
container_issue 17
container_start_page 21843
container_title Optics express
container_volume 26
creator Nikodem, Michał
Krzempek, Karol
Dudzik, Grzegorz
Abramski, Krzysztof
description A laser-based spectrometer exploiting a novel Kagome-type hollow core photonic crystal fiber, which serves as a gas cell is demonstrated. Low attenuation of this silica-based fiber in the 3.4 µm wavelength region enables accessing strong, fundamental transitions of methane, which was used as a target analyte in the presented experiment. With an all-fiber differential frequency generation source combined with wavelength modulation spectroscopy technique detection limit at single parts-per-million by volume level was obtained. These results show potential for developing compact and sensitive Kagome-fiber-based mid-infrared laser spectrometers.
doi_str_mv 10.1364/OE.26.021843
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2091816206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2091816206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2443-c0c1af43f6a7547130ef4b989bd4a1a7abe2e06792b943fcb9bd2ab2c0639fff3</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMotlZ3riVLF86YPyeTpZRqhcJsdB2S9AZHZpoxmSJ9MF_AJzPSKq7ugftx-DgIXVJSUl6J22ZRsqokjNaCH6EpJUoUgtTy-F-eoLOU3gihQip5iiacUE7qWk7Rchm6LnxgFyJg31qIhUmpTSOssbEpxGFswwanAdwYQ3Jh2OHgcQ_jq9kANiPmpcBfn_05OvGmS3BxuDP08rB4ni-LVfP4NL9fFY4JwQtHHDVecF8ZeSdk1gAvrKqVXQtDjTQWGJBKKmZVppzND2Ysc6TiynvPZ-h63zvE8L6FNOq-TQ66LuuEbdKMKFrTimV-hm72qMvmKYLXQ2x7E3eaEv2znW4WmlV6v13Grw7NW9vD-g_-HYt_AzqUac8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2091816206</pqid></control><display><type>article</type><title>Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Nikodem, Michał ; Krzempek, Karol ; Dudzik, Grzegorz ; Abramski, Krzysztof</creator><creatorcontrib>Nikodem, Michał ; Krzempek, Karol ; Dudzik, Grzegorz ; Abramski, Krzysztof</creatorcontrib><description>A laser-based spectrometer exploiting a novel Kagome-type hollow core photonic crystal fiber, which serves as a gas cell is demonstrated. Low attenuation of this silica-based fiber in the 3.4 µm wavelength region enables accessing strong, fundamental transitions of methane, which was used as a target analyte in the presented experiment. With an all-fiber differential frequency generation source combined with wavelength modulation spectroscopy technique detection limit at single parts-per-million by volume level was obtained. These results show potential for developing compact and sensitive Kagome-fiber-based mid-infrared laser spectrometers.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.26.021843</identifier><identifier>PMID: 30130887</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2018-08, Vol.26 (17), p.21843-21848</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2443-c0c1af43f6a7547130ef4b989bd4a1a7abe2e06792b943fcb9bd2ab2c0639fff3</citedby><cites>FETCH-LOGICAL-c2443-c0c1af43f6a7547130ef4b989bd4a1a7abe2e06792b943fcb9bd2ab2c0639fff3</cites><orcidid>0000-0003-0495-4285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30130887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikodem, Michał</creatorcontrib><creatorcontrib>Krzempek, Karol</creatorcontrib><creatorcontrib>Dudzik, Grzegorz</creatorcontrib><creatorcontrib>Abramski, Krzysztof</creatorcontrib><title>Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>A laser-based spectrometer exploiting a novel Kagome-type hollow core photonic crystal fiber, which serves as a gas cell is demonstrated. Low attenuation of this silica-based fiber in the 3.4 µm wavelength region enables accessing strong, fundamental transitions of methane, which was used as a target analyte in the presented experiment. With an all-fiber differential frequency generation source combined with wavelength modulation spectroscopy technique detection limit at single parts-per-million by volume level was obtained. These results show potential for developing compact and sensitive Kagome-fiber-based mid-infrared laser spectrometers.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KAzEUhYMotlZ3riVLF86YPyeTpZRqhcJsdB2S9AZHZpoxmSJ9MF_AJzPSKq7ugftx-DgIXVJSUl6J22ZRsqokjNaCH6EpJUoUgtTy-F-eoLOU3gihQip5iiacUE7qWk7Rchm6LnxgFyJg31qIhUmpTSOssbEpxGFswwanAdwYQ3Jh2OHgcQ_jq9kANiPmpcBfn_05OvGmS3BxuDP08rB4ni-LVfP4NL9fFY4JwQtHHDVecF8ZeSdk1gAvrKqVXQtDjTQWGJBKKmZVppzND2Ysc6TiynvPZ-h63zvE8L6FNOq-TQ66LuuEbdKMKFrTimV-hm72qMvmKYLXQ2x7E3eaEv2znW4WmlV6v13Grw7NW9vD-g_-HYt_AzqUac8</recordid><startdate>20180820</startdate><enddate>20180820</enddate><creator>Nikodem, Michał</creator><creator>Krzempek, Karol</creator><creator>Dudzik, Grzegorz</creator><creator>Abramski, Krzysztof</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0495-4285</orcidid></search><sort><creationdate>20180820</creationdate><title>Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm</title><author>Nikodem, Michał ; Krzempek, Karol ; Dudzik, Grzegorz ; Abramski, Krzysztof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2443-c0c1af43f6a7547130ef4b989bd4a1a7abe2e06792b943fcb9bd2ab2c0639fff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikodem, Michał</creatorcontrib><creatorcontrib>Krzempek, Karol</creatorcontrib><creatorcontrib>Dudzik, Grzegorz</creatorcontrib><creatorcontrib>Abramski, Krzysztof</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikodem, Michał</au><au>Krzempek, Karol</au><au>Dudzik, Grzegorz</au><au>Abramski, Krzysztof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2018-08-20</date><risdate>2018</risdate><volume>26</volume><issue>17</issue><spage>21843</spage><epage>21848</epage><pages>21843-21848</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>A laser-based spectrometer exploiting a novel Kagome-type hollow core photonic crystal fiber, which serves as a gas cell is demonstrated. Low attenuation of this silica-based fiber in the 3.4 µm wavelength region enables accessing strong, fundamental transitions of methane, which was used as a target analyte in the presented experiment. With an all-fiber differential frequency generation source combined with wavelength modulation spectroscopy technique detection limit at single parts-per-million by volume level was obtained. These results show potential for developing compact and sensitive Kagome-fiber-based mid-infrared laser spectrometers.</abstract><cop>United States</cop><pmid>30130887</pmid><doi>10.1364/OE.26.021843</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0495-4285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2018-08, Vol.26 (17), p.21843-21848
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2091816206
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hollow%20core%20fiber-assisted%20absorption%20spectroscopy%20of%20methane%20at%203.4%20%C2%B5m&rft.jtitle=Optics%20express&rft.au=Nikodem,%20Micha%C5%82&rft.date=2018-08-20&rft.volume=26&rft.issue=17&rft.spage=21843&rft.epage=21848&rft.pages=21843-21848&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.26.021843&rft_dat=%3Cproquest_cross%3E2091816206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2091816206&rft_id=info:pmid/30130887&rfr_iscdi=true