Stability of Halide Perovskite Solar Cell Devices: In Situ Observation of Oxygen Diffusion under Biasing

Using in situ electrical biasing transmission electron microscopy, structural and chemical modification to n–i–p‐type MAPbI3 solar cells are examined with a TiO2 electron‐transporting layer caused by bias in the absence of other stimuli known to affect the physical integrity of MAPbI3 such as moistu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-09, Vol.30 (39), p.e1802769-n/a
Hauptverfasser: Jung, Hee Joon, Kim, Daehan, Kim, Sungkyu, Park, Joonsuk, Dravid, Vinayak P., Shin, Byungha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page e1802769
container_title Advanced materials (Weinheim)
container_volume 30
creator Jung, Hee Joon
Kim, Daehan
Kim, Sungkyu
Park, Joonsuk
Dravid, Vinayak P.
Shin, Byungha
description Using in situ electrical biasing transmission electron microscopy, structural and chemical modification to n–i–p‐type MAPbI3 solar cells are examined with a TiO2 electron‐transporting layer caused by bias in the absence of other stimuli known to affect the physical integrity of MAPbI3 such as moisture, oxygen, light, and thermal stress. Electron energy loss spectroscopy (EELS) measurements reveal that oxygen ions are released from the TiO2 and migrate into the MAPbI3 under a forward bias. The injection of oxygen is accompanied by significant structural transformation; a single‐crystalline MAPbI3 grain becomes amorphous with the appearance of PbI2. Withdrawal of oxygen back to the TiO2, and some restoration of the crystallinity of the MAPbI3, is observed after the storage in dark under no bias. A subsequent application of a reverse bias further removes more oxygen ions from the MAPbI3. Light current–voltage measurements of perovskite solar cells exhibit poorer performance after elongated forward biasing; recovery of the performance, though not complete, is achieved by subsequently applying a negative bias. The results indicate negative impacts on the device performance caused by the oxygen migration to the MAPbI3 under a forward bias. This study identifies a new degradation mechanism intrinsic to n–i–p MAPbI3 devices with TiO2. Using an in situ biasing TEM experiment, a new intrinsic degradation mechanism of methylammonium lead triiodide (MAPbI3) solar cells with a titanium dioxide (TiO2) electron‐transporting layer is identified: oxygen migration from the TiO2 layer to the MAPbI3 under forward biasing, which leads to severe structural modification of the MAPbI3 and the process is pseudo‐reversible.
doi_str_mv 10.1002/adma.201802769
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2091815282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111127862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4399-5f61e95eba19eaa5f1dbf1249b2bc12761210c2b5f2f05a461f231fcb20be0573</originalsourceid><addsrcrecordid>eNqFkdFP2zAQxq1paHRsrzwiS3vZS8qdE6cxb127DSRQkbo9W3ZyBkOagJ1063-_RGUg8cJJp5NOv_t0dx9jxwhTBBCnptqYqQAsQMxy9Y5NUApMMlDyPZuASmWi8qw4ZB9jvAMAlUP-gR2mgOmYE3a77oz1te92vHX83NS-In5Nod3Ge98RX7e1CXxBdc2XtPUlxTN-0fC173q-spHC1nS-bcbh1d_dDTV86Z3r49jrm4oC_-ZN9M3NJ3bgTB3p81M9Yr9_fP-1OE8uVz8vFvPLpMxSpRLpciQlyRpUZIx0WFmHIlNW2BKHG1EglMJKJxxIk-XoRIqutAIsgZylR-zrXvchtI89xU5vfCyH_U1DbR-1AIXF8KRCDOiXV-hd24dm2E4LHELMinykpnuqDG2MgZx-CH5jwk4j6NEDPXqgnz0YBk6eZHu7oeoZ___0AVB74I-vafeGnJ4vr-Yv4v8ATzmSMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111127862</pqid></control><display><type>article</type><title>Stability of Halide Perovskite Solar Cell Devices: In Situ Observation of Oxygen Diffusion under Biasing</title><source>Wiley Online Library All Journals</source><creator>Jung, Hee Joon ; Kim, Daehan ; Kim, Sungkyu ; Park, Joonsuk ; Dravid, Vinayak P. ; Shin, Byungha</creator><creatorcontrib>Jung, Hee Joon ; Kim, Daehan ; Kim, Sungkyu ; Park, Joonsuk ; Dravid, Vinayak P. ; Shin, Byungha</creatorcontrib><description>Using in situ electrical biasing transmission electron microscopy, structural and chemical modification to n–i–p‐type MAPbI3 solar cells are examined with a TiO2 electron‐transporting layer caused by bias in the absence of other stimuli known to affect the physical integrity of MAPbI3 such as moisture, oxygen, light, and thermal stress. Electron energy loss spectroscopy (EELS) measurements reveal that oxygen ions are released from the TiO2 and migrate into the MAPbI3 under a forward bias. The injection of oxygen is accompanied by significant structural transformation; a single‐crystalline MAPbI3 grain becomes amorphous with the appearance of PbI2. Withdrawal of oxygen back to the TiO2, and some restoration of the crystallinity of the MAPbI3, is observed after the storage in dark under no bias. A subsequent application of a reverse bias further removes more oxygen ions from the MAPbI3. Light current–voltage measurements of perovskite solar cells exhibit poorer performance after elongated forward biasing; recovery of the performance, though not complete, is achieved by subsequently applying a negative bias. The results indicate negative impacts on the device performance caused by the oxygen migration to the MAPbI3 under a forward bias. This study identifies a new degradation mechanism intrinsic to n–i–p MAPbI3 devices with TiO2. Using an in situ biasing TEM experiment, a new intrinsic degradation mechanism of methylammonium lead triiodide (MAPbI3) solar cells with a titanium dioxide (TiO2) electron‐transporting layer is identified: oxygen migration from the TiO2 layer to the MAPbI3 under forward biasing, which leads to severe structural modification of the MAPbI3 and the process is pseudo‐reversible.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201802769</identifier><identifier>PMID: 30133013</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bias ; Crystal structure ; Crystallinity ; degradation ; EELS ; Electrical measurement ; Electron energy loss spectroscopy ; Energy dissipation ; in situ TEM ; Materials science ; Migration ; Organic chemistry ; Oxygen ions ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Restoration ; Solar cells ; Thermal stress ; Titanium dioxide ; Transmission electron microscopy</subject><ispartof>Advanced materials (Weinheim), 2018-09, Vol.30 (39), p.e1802769-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4399-5f61e95eba19eaa5f1dbf1249b2bc12761210c2b5f2f05a461f231fcb20be0573</citedby><cites>FETCH-LOGICAL-c4399-5f61e95eba19eaa5f1dbf1249b2bc12761210c2b5f2f05a461f231fcb20be0573</cites><orcidid>0000-0001-6845-0305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201802769$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201802769$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30133013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jung, Hee Joon</creatorcontrib><creatorcontrib>Kim, Daehan</creatorcontrib><creatorcontrib>Kim, Sungkyu</creatorcontrib><creatorcontrib>Park, Joonsuk</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Shin, Byungha</creatorcontrib><title>Stability of Halide Perovskite Solar Cell Devices: In Situ Observation of Oxygen Diffusion under Biasing</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Using in situ electrical biasing transmission electron microscopy, structural and chemical modification to n–i–p‐type MAPbI3 solar cells are examined with a TiO2 electron‐transporting layer caused by bias in the absence of other stimuli known to affect the physical integrity of MAPbI3 such as moisture, oxygen, light, and thermal stress. Electron energy loss spectroscopy (EELS) measurements reveal that oxygen ions are released from the TiO2 and migrate into the MAPbI3 under a forward bias. The injection of oxygen is accompanied by significant structural transformation; a single‐crystalline MAPbI3 grain becomes amorphous with the appearance of PbI2. Withdrawal of oxygen back to the TiO2, and some restoration of the crystallinity of the MAPbI3, is observed after the storage in dark under no bias. A subsequent application of a reverse bias further removes more oxygen ions from the MAPbI3. Light current–voltage measurements of perovskite solar cells exhibit poorer performance after elongated forward biasing; recovery of the performance, though not complete, is achieved by subsequently applying a negative bias. The results indicate negative impacts on the device performance caused by the oxygen migration to the MAPbI3 under a forward bias. This study identifies a new degradation mechanism intrinsic to n–i–p MAPbI3 devices with TiO2. Using an in situ biasing TEM experiment, a new intrinsic degradation mechanism of methylammonium lead triiodide (MAPbI3) solar cells with a titanium dioxide (TiO2) electron‐transporting layer is identified: oxygen migration from the TiO2 layer to the MAPbI3 under forward biasing, which leads to severe structural modification of the MAPbI3 and the process is pseudo‐reversible.</description><subject>Bias</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>degradation</subject><subject>EELS</subject><subject>Electrical measurement</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>in situ TEM</subject><subject>Materials science</subject><subject>Migration</subject><subject>Organic chemistry</subject><subject>Oxygen ions</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Restoration</subject><subject>Solar cells</subject><subject>Thermal stress</subject><subject>Titanium dioxide</subject><subject>Transmission electron microscopy</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkdFP2zAQxq1paHRsrzwiS3vZS8qdE6cxb127DSRQkbo9W3ZyBkOagJ1063-_RGUg8cJJp5NOv_t0dx9jxwhTBBCnptqYqQAsQMxy9Y5NUApMMlDyPZuASmWi8qw4ZB9jvAMAlUP-gR2mgOmYE3a77oz1te92vHX83NS-In5Nod3Ge98RX7e1CXxBdc2XtPUlxTN-0fC173q-spHC1nS-bcbh1d_dDTV86Z3r49jrm4oC_-ZN9M3NJ3bgTB3p81M9Yr9_fP-1OE8uVz8vFvPLpMxSpRLpciQlyRpUZIx0WFmHIlNW2BKHG1EglMJKJxxIk-XoRIqutAIsgZylR-zrXvchtI89xU5vfCyH_U1DbR-1AIXF8KRCDOiXV-hd24dm2E4LHELMinykpnuqDG2MgZx-CH5jwk4j6NEDPXqgnz0YBk6eZHu7oeoZ___0AVB74I-vafeGnJ4vr-Yv4v8ATzmSMw</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Jung, Hee Joon</creator><creator>Kim, Daehan</creator><creator>Kim, Sungkyu</creator><creator>Park, Joonsuk</creator><creator>Dravid, Vinayak P.</creator><creator>Shin, Byungha</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6845-0305</orcidid></search><sort><creationdate>20180926</creationdate><title>Stability of Halide Perovskite Solar Cell Devices: In Situ Observation of Oxygen Diffusion under Biasing</title><author>Jung, Hee Joon ; Kim, Daehan ; Kim, Sungkyu ; Park, Joonsuk ; Dravid, Vinayak P. ; Shin, Byungha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4399-5f61e95eba19eaa5f1dbf1249b2bc12761210c2b5f2f05a461f231fcb20be0573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bias</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>degradation</topic><topic>EELS</topic><topic>Electrical measurement</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>in situ TEM</topic><topic>Materials science</topic><topic>Migration</topic><topic>Organic chemistry</topic><topic>Oxygen ions</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Restoration</topic><topic>Solar cells</topic><topic>Thermal stress</topic><topic>Titanium dioxide</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Hee Joon</creatorcontrib><creatorcontrib>Kim, Daehan</creatorcontrib><creatorcontrib>Kim, Sungkyu</creatorcontrib><creatorcontrib>Park, Joonsuk</creatorcontrib><creatorcontrib>Dravid, Vinayak P.</creatorcontrib><creatorcontrib>Shin, Byungha</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Hee Joon</au><au>Kim, Daehan</au><au>Kim, Sungkyu</au><au>Park, Joonsuk</au><au>Dravid, Vinayak P.</au><au>Shin, Byungha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of Halide Perovskite Solar Cell Devices: In Situ Observation of Oxygen Diffusion under Biasing</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-09-26</date><risdate>2018</risdate><volume>30</volume><issue>39</issue><spage>e1802769</spage><epage>n/a</epage><pages>e1802769-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Using in situ electrical biasing transmission electron microscopy, structural and chemical modification to n–i–p‐type MAPbI3 solar cells are examined with a TiO2 electron‐transporting layer caused by bias in the absence of other stimuli known to affect the physical integrity of MAPbI3 such as moisture, oxygen, light, and thermal stress. Electron energy loss spectroscopy (EELS) measurements reveal that oxygen ions are released from the TiO2 and migrate into the MAPbI3 under a forward bias. The injection of oxygen is accompanied by significant structural transformation; a single‐crystalline MAPbI3 grain becomes amorphous with the appearance of PbI2. Withdrawal of oxygen back to the TiO2, and some restoration of the crystallinity of the MAPbI3, is observed after the storage in dark under no bias. A subsequent application of a reverse bias further removes more oxygen ions from the MAPbI3. Light current–voltage measurements of perovskite solar cells exhibit poorer performance after elongated forward biasing; recovery of the performance, though not complete, is achieved by subsequently applying a negative bias. The results indicate negative impacts on the device performance caused by the oxygen migration to the MAPbI3 under a forward bias. This study identifies a new degradation mechanism intrinsic to n–i–p MAPbI3 devices with TiO2. Using an in situ biasing TEM experiment, a new intrinsic degradation mechanism of methylammonium lead triiodide (MAPbI3) solar cells with a titanium dioxide (TiO2) electron‐transporting layer is identified: oxygen migration from the TiO2 layer to the MAPbI3 under forward biasing, which leads to severe structural modification of the MAPbI3 and the process is pseudo‐reversible.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>30133013</pmid><doi>10.1002/adma.201802769</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6845-0305</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-09, Vol.30 (39), p.e1802769-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2091815282
source Wiley Online Library All Journals
subjects Bias
Crystal structure
Crystallinity
degradation
EELS
Electrical measurement
Electron energy loss spectroscopy
Energy dissipation
in situ TEM
Materials science
Migration
Organic chemistry
Oxygen ions
perovskite solar cells
Perovskites
Photovoltaic cells
Restoration
Solar cells
Thermal stress
Titanium dioxide
Transmission electron microscopy
title Stability of Halide Perovskite Solar Cell Devices: In Situ Observation of Oxygen Diffusion under Biasing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A20%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20Halide%20Perovskite%20Solar%20Cell%20Devices:%20In%20Situ%20Observation%20of%20Oxygen%20Diffusion%20under%20Biasing&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jung,%20Hee%20Joon&rft.date=2018-09-26&rft.volume=30&rft.issue=39&rft.spage=e1802769&rft.epage=n/a&rft.pages=e1802769-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201802769&rft_dat=%3Cproquest_cross%3E2111127862%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111127862&rft_id=info:pmid/30133013&rfr_iscdi=true