Comparative mapping of cattle chromosome 19: cytogenetic localization of 19 BAC clones

Here we present the results of fluorescent in situ hybridization (FISH) mapping of a set of cattle BAC clones preselected for assignment on cattle chromosome 19 (BTA19). The BAC clones were anchored to human chromosome 17 (HSA17) sequences by BLASTn similarity search of cattle BAC-ends against the h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytogenetic and genome research 2006-01, Vol.112 (3-4), p.235-240
Hauptverfasser: Larkin, D.M., Astakhova, N.M., Prokhorovich, M.A., Lewin, H.A., Zhdanova, N.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 3-4
container_start_page 235
container_title Cytogenetic and genome research
container_volume 112
creator Larkin, D.M.
Astakhova, N.M.
Prokhorovich, M.A.
Lewin, H.A.
Zhdanova, N.S.
description Here we present the results of fluorescent in situ hybridization (FISH) mapping of a set of cattle BAC clones preselected for assignment on cattle chromosome 19 (BTA19). The BAC clones were anchored to human chromosome 17 (HSA17) sequences by BLASTn similarity search of cattle BAC-ends against the human genome sequence (NCBI build 33). Five blocks of homologous synteny were defined in the comparative map of BTA19 and HSA17 built with FISH data and the human genome coordinates. The positions for four evolutionary breakpoints in the bovine and human chromosomes were identified. Comparison of the FISH comparative map with previously published comparative RH, physical, and cytogenetic maps of BTA19 did not reveal major conflicts and allowed for the extension of the boundaries of homology between BTA19 and HSA17. Comparative analysis of HSA17, BTA19, and mouse chromosome 11 (MMU11) demonstrates that most likely mice retain the ancestral organization of the synteny group, and both cattle and human chromosomes underwent several major internal rearrangements after the divergence of Primates, Rodentia, and Cetartiodactyla.
doi_str_mv 10.1159/000089876
format Article
fullrecord <record><control><sourceid>proquest_karge</sourceid><recordid>TN_cdi_proquest_miscellaneous_20912957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19493901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-cb73c96c963899dbe68c5607175ef336b1dbf56dff35acc58a4d24520933a453</originalsourceid><addsrcrecordid>eNqF0c1r2zAYBnBRVvqR7bDzoIgdCjuk1atv9ZaFrisUeiljNyPLcubWtjzJLqR_fRUSMtglQiAdfu9zeB-EPgO5AhDmmuSjjVbyCJ0Bp3yuhfn9Yf_XcIrOU3omBDQX8gSdguSaK6XP0K9l6AYb7di8etzZYWj6FQ41dnYcW4_dnxi6kELnMZgb7NZjWPnej43DbXC2bd7yZOg3E2Dw98USuzb0Pn1Ex7Vtk_-0e2fo6cft0_Ln_OHx7n65eJg7Ttk4d6Vizsh8mTamKr3UTkiiQAlfMyZLqMpayKqumbDOCW15RbmgxDBmuWAzdLmNHWL4O_k0Fl2TnG9b2_swpUIqqUArchBSoAqIUochMUCNOAzBcMMMgQy__gefwxT7vJWCUp7zhJQZfdsiF0NK0dfFEJvOxnUBpNh0XOw7zvZiFziVna_-yV2pGXzZghcbVz7uwXb8Hcbup5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224209566</pqid></control><display><type>article</type><title>Comparative mapping of cattle chromosome 19: cytogenetic localization of 19 BAC clones</title><source>MEDLINE</source><source>Karger Journals</source><source>Alma/SFX Local Collection</source><creator>Larkin, D.M. ; Astakhova, N.M. ; Prokhorovich, M.A. ; Lewin, H.A. ; Zhdanova, N.S.</creator><creatorcontrib>Larkin, D.M. ; Astakhova, N.M. ; Prokhorovich, M.A. ; Lewin, H.A. ; Zhdanova, N.S.</creatorcontrib><description>Here we present the results of fluorescent in situ hybridization (FISH) mapping of a set of cattle BAC clones preselected for assignment on cattle chromosome 19 (BTA19). The BAC clones were anchored to human chromosome 17 (HSA17) sequences by BLASTn similarity search of cattle BAC-ends against the human genome sequence (NCBI build 33). Five blocks of homologous synteny were defined in the comparative map of BTA19 and HSA17 built with FISH data and the human genome coordinates. The positions for four evolutionary breakpoints in the bovine and human chromosomes were identified. Comparison of the FISH comparative map with previously published comparative RH, physical, and cytogenetic maps of BTA19 did not reveal major conflicts and allowed for the extension of the boundaries of homology between BTA19 and HSA17. Comparative analysis of HSA17, BTA19, and mouse chromosome 11 (MMU11) demonstrates that most likely mice retain the ancestral organization of the synteny group, and both cattle and human chromosomes underwent several major internal rearrangements after the divergence of Primates, Rodentia, and Cetartiodactyla.</description><identifier>ISSN: 1424-8581</identifier><identifier>EISSN: 1424-859X</identifier><identifier>DOI: 10.1159/000089876</identifier><identifier>PMID: 16484778</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Animals ; Cattle - genetics ; Chromosome Mapping ; Chromosomes, Artificial, Bacterial ; Cloning, Molecular ; Computational Biology ; Evolution, Molecular ; Humans ; In Situ Hybridization, Fluorescence ; Mice ; Original Article ; Primates ; Rodentia ; Sequence Homology, Nucleic Acid</subject><ispartof>Cytogenetic and genome research, 2006-01, Vol.112 (3-4), p.235-240</ispartof><rights>2006 S. Karger AG, Basel</rights><rights>2006 S. Karger AG, Basel.</rights><rights>Copyright (c) 2006 S. Karger AG, Basel</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-cb73c96c963899dbe68c5607175ef336b1dbf56dff35acc58a4d24520933a453</citedby><cites>FETCH-LOGICAL-c423t-cb73c96c963899dbe68c5607175ef336b1dbf56dff35acc58a4d24520933a453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,2425,27913,27914</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16484778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Larkin, D.M.</creatorcontrib><creatorcontrib>Astakhova, N.M.</creatorcontrib><creatorcontrib>Prokhorovich, M.A.</creatorcontrib><creatorcontrib>Lewin, H.A.</creatorcontrib><creatorcontrib>Zhdanova, N.S.</creatorcontrib><title>Comparative mapping of cattle chromosome 19: cytogenetic localization of 19 BAC clones</title><title>Cytogenetic and genome research</title><addtitle>Cytogenet Genome Res</addtitle><description>Here we present the results of fluorescent in situ hybridization (FISH) mapping of a set of cattle BAC clones preselected for assignment on cattle chromosome 19 (BTA19). The BAC clones were anchored to human chromosome 17 (HSA17) sequences by BLASTn similarity search of cattle BAC-ends against the human genome sequence (NCBI build 33). Five blocks of homologous synteny were defined in the comparative map of BTA19 and HSA17 built with FISH data and the human genome coordinates. The positions for four evolutionary breakpoints in the bovine and human chromosomes were identified. Comparison of the FISH comparative map with previously published comparative RH, physical, and cytogenetic maps of BTA19 did not reveal major conflicts and allowed for the extension of the boundaries of homology between BTA19 and HSA17. Comparative analysis of HSA17, BTA19, and mouse chromosome 11 (MMU11) demonstrates that most likely mice retain the ancestral organization of the synteny group, and both cattle and human chromosomes underwent several major internal rearrangements after the divergence of Primates, Rodentia, and Cetartiodactyla.</description><subject>Animals</subject><subject>Cattle - genetics</subject><subject>Chromosome Mapping</subject><subject>Chromosomes, Artificial, Bacterial</subject><subject>Cloning, Molecular</subject><subject>Computational Biology</subject><subject>Evolution, Molecular</subject><subject>Humans</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Mice</subject><subject>Original Article</subject><subject>Primates</subject><subject>Rodentia</subject><subject>Sequence Homology, Nucleic Acid</subject><issn>1424-8581</issn><issn>1424-859X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0c1r2zAYBnBRVvqR7bDzoIgdCjuk1atv9ZaFrisUeiljNyPLcubWtjzJLqR_fRUSMtglQiAdfu9zeB-EPgO5AhDmmuSjjVbyCJ0Bp3yuhfn9Yf_XcIrOU3omBDQX8gSdguSaK6XP0K9l6AYb7di8etzZYWj6FQ41dnYcW4_dnxi6kELnMZgb7NZjWPnej43DbXC2bd7yZOg3E2Dw98USuzb0Pn1Ex7Vtk_-0e2fo6cft0_Ln_OHx7n65eJg7Ttk4d6Vizsh8mTamKr3UTkiiQAlfMyZLqMpayKqumbDOCW15RbmgxDBmuWAzdLmNHWL4O_k0Fl2TnG9b2_swpUIqqUArchBSoAqIUochMUCNOAzBcMMMgQy__gefwxT7vJWCUp7zhJQZfdsiF0NK0dfFEJvOxnUBpNh0XOw7zvZiFziVna_-yV2pGXzZghcbVz7uwXb8Hcbup5M</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Larkin, D.M.</creator><creator>Astakhova, N.M.</creator><creator>Prokhorovich, M.A.</creator><creator>Lewin, H.A.</creator><creator>Zhdanova, N.S.</creator><general>S. Karger AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope></search><sort><creationdate>20060101</creationdate><title>Comparative mapping of cattle chromosome 19: cytogenetic localization of 19 BAC clones</title><author>Larkin, D.M. ; Astakhova, N.M. ; Prokhorovich, M.A. ; Lewin, H.A. ; Zhdanova, N.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-cb73c96c963899dbe68c5607175ef336b1dbf56dff35acc58a4d24520933a453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Cattle - genetics</topic><topic>Chromosome Mapping</topic><topic>Chromosomes, Artificial, Bacterial</topic><topic>Cloning, Molecular</topic><topic>Computational Biology</topic><topic>Evolution, Molecular</topic><topic>Humans</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Mice</topic><topic>Original Article</topic><topic>Primates</topic><topic>Rodentia</topic><topic>Sequence Homology, Nucleic Acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Larkin, D.M.</creatorcontrib><creatorcontrib>Astakhova, N.M.</creatorcontrib><creatorcontrib>Prokhorovich, M.A.</creatorcontrib><creatorcontrib>Lewin, H.A.</creatorcontrib><creatorcontrib>Zhdanova, N.S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><jtitle>Cytogenetic and genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Larkin, D.M.</au><au>Astakhova, N.M.</au><au>Prokhorovich, M.A.</au><au>Lewin, H.A.</au><au>Zhdanova, N.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative mapping of cattle chromosome 19: cytogenetic localization of 19 BAC clones</atitle><jtitle>Cytogenetic and genome research</jtitle><addtitle>Cytogenet Genome Res</addtitle><date>2006-01-01</date><risdate>2006</risdate><volume>112</volume><issue>3-4</issue><spage>235</spage><epage>240</epage><pages>235-240</pages><issn>1424-8581</issn><eissn>1424-859X</eissn><abstract>Here we present the results of fluorescent in situ hybridization (FISH) mapping of a set of cattle BAC clones preselected for assignment on cattle chromosome 19 (BTA19). The BAC clones were anchored to human chromosome 17 (HSA17) sequences by BLASTn similarity search of cattle BAC-ends against the human genome sequence (NCBI build 33). Five blocks of homologous synteny were defined in the comparative map of BTA19 and HSA17 built with FISH data and the human genome coordinates. The positions for four evolutionary breakpoints in the bovine and human chromosomes were identified. Comparison of the FISH comparative map with previously published comparative RH, physical, and cytogenetic maps of BTA19 did not reveal major conflicts and allowed for the extension of the boundaries of homology between BTA19 and HSA17. Comparative analysis of HSA17, BTA19, and mouse chromosome 11 (MMU11) demonstrates that most likely mice retain the ancestral organization of the synteny group, and both cattle and human chromosomes underwent several major internal rearrangements after the divergence of Primates, Rodentia, and Cetartiodactyla.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>16484778</pmid><doi>10.1159/000089876</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1424-8581
ispartof Cytogenetic and genome research, 2006-01, Vol.112 (3-4), p.235-240
issn 1424-8581
1424-859X
language eng
recordid cdi_proquest_miscellaneous_20912957
source MEDLINE; Karger Journals; Alma/SFX Local Collection
subjects Animals
Cattle - genetics
Chromosome Mapping
Chromosomes, Artificial, Bacterial
Cloning, Molecular
Computational Biology
Evolution, Molecular
Humans
In Situ Hybridization, Fluorescence
Mice
Original Article
Primates
Rodentia
Sequence Homology, Nucleic Acid
title Comparative mapping of cattle chromosome 19: cytogenetic localization of 19 BAC clones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_karge&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20mapping%20of%20cattle%20chromosome%2019:%20cytogenetic%20localization%20of%2019%20BAC%20clones&rft.jtitle=Cytogenetic%20and%20genome%20research&rft.au=Larkin,%20D.M.&rft.date=2006-01-01&rft.volume=112&rft.issue=3-4&rft.spage=235&rft.epage=240&rft.pages=235-240&rft.issn=1424-8581&rft.eissn=1424-859X&rft_id=info:doi/10.1159/000089876&rft_dat=%3Cproquest_karge%3E19493901%3C/proquest_karge%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224209566&rft_id=info:pmid/16484778&rfr_iscdi=true