Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning

The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst light curves using multizone models that follow the nucleosynthesis (ap and rp-processes) with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2007-12, Vol.671 (2), p.L141-L144
Hauptverfasser: Heger, Alexander, Cumming, Andrew, Galloway, Duncan K, Woosley, Stanford E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page L144
container_issue 2
container_start_page L141
container_title The Astrophysical journal
container_volume 671
creator Heger, Alexander
Cumming, Andrew
Galloway, Duncan K
Woosley, Stanford E
description The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst light curves using multizone models that follow the nucleosynthesis (ap and rp-processes) with an extensive nuclear reaction network. The theoretical and observed burst light curves show remarkable agreement. The models naturally explain the slow rise (duration approximately 5 s) and long tails ( approximately 100 s) of these bursts, as well as their dependence on mass accretion rate. This comparison provides further evidence for solar metallicity in the accreted material in this source and gives a distance to the source of 6.07 plus or minus 0.18 kpc [unk], where [unk] is the burst emission anisotropy factor. The main difference is that the observed light curves do not show the distinct two-stage rise of the models. This may reflect the time for burning to spread over the stellar surface or may indicate that our treatment of heat transport or nuclear physics needs to be revised. The trends in burst properties with accretion rate are well reproduced by our spherically symmetric models that include chemical and thermal inertia from the ashes of previous bursts. Changes in the covering fraction of the accreted fuel are not required.
doi_str_mv 10.1086/525522
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_20912867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743284637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-731980ded316a311b5f4a2a73d5131f8f365e15e37cb3a8c12641ede5086319f3</originalsourceid><addsrcrecordid>eNp9kc9Kw0AQxoMoWKs-w3pQDxLd2T_5460WbQsVRSt6W7ab3RJJs3G3PeTmO_iGPokJLbSCeJqB-X3f8M0EwTHgS8BJdMUJ54TsBB3gNAkZ5fHuVr8fHHj_jjFmJE07weu9zXThkTVoUlcajdBb-CRrdLN0fuGRcXaOBs8IEhJ9f34Rdo166NHZqW4VrgqbXmnv0bDOnJ3pshWWeTk7DPaMLLw-Wtdu8HJ3O-kPw_HDYNTvjUPFAC_CmEKa4ExnFCJJAabcMElkTDMOFExiaMQ1cE1jNaUyUUAiBjrTvAnaSA3tBucr38rZj6X2CzHPvdJFIUttl17EjJKERTRuyLN_SYJTIEm0BSpnvXfaiMrlc-lqAVi0FxarCzfg6dpReiUL42Spcr-h05Szxq_hLlZcbqvNtHmIaB8iohgEEWNgIKqsTXTyB_178w9FK44f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20912867</pqid></control><display><type>article</type><title>Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning</title><source>Institute of Physics Open Access Journal Titles</source><creator>Heger, Alexander ; Cumming, Andrew ; Galloway, Duncan K ; Woosley, Stanford E</creator><creatorcontrib>Heger, Alexander ; Cumming, Andrew ; Galloway, Duncan K ; Woosley, Stanford E</creatorcontrib><description>The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst light curves using multizone models that follow the nucleosynthesis (ap and rp-processes) with an extensive nuclear reaction network. The theoretical and observed burst light curves show remarkable agreement. The models naturally explain the slow rise (duration approximately 5 s) and long tails ( approximately 100 s) of these bursts, as well as their dependence on mass accretion rate. This comparison provides further evidence for solar metallicity in the accreted material in this source and gives a distance to the source of 6.07 plus or minus 0.18 kpc [unk], where [unk] is the burst emission anisotropy factor. The main difference is that the observed light curves do not show the distinct two-stage rise of the models. This may reflect the time for burning to spread over the stellar surface or may indicate that our treatment of heat transport or nuclear physics needs to be revised. The trends in burst properties with accretion rate are well reproduced by our spherically symmetric models that include chemical and thermal inertia from the ashes of previous bursts. Changes in the covering fraction of the accreted fuel are not required.</description><identifier>ISSN: 1538-4357</identifier><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/525522</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology</subject><ispartof>The Astrophysical journal, 2007-12, Vol.671 (2), p.L141-L144</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-731980ded316a311b5f4a2a73d5131f8f365e15e37cb3a8c12641ede5086319f3</citedby><cites>FETCH-LOGICAL-c410t-731980ded316a311b5f4a2a73d5131f8f365e15e37cb3a8c12641ede5086319f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/525522/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27628,27924,27925,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1538-4357/671/2/L141$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19954673$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heger, Alexander</creatorcontrib><creatorcontrib>Cumming, Andrew</creatorcontrib><creatorcontrib>Galloway, Duncan K</creatorcontrib><creatorcontrib>Woosley, Stanford E</creatorcontrib><title>Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning</title><title>The Astrophysical journal</title><description>The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst light curves using multizone models that follow the nucleosynthesis (ap and rp-processes) with an extensive nuclear reaction network. The theoretical and observed burst light curves show remarkable agreement. The models naturally explain the slow rise (duration approximately 5 s) and long tails ( approximately 100 s) of these bursts, as well as their dependence on mass accretion rate. This comparison provides further evidence for solar metallicity in the accreted material in this source and gives a distance to the source of 6.07 plus or minus 0.18 kpc [unk], where [unk] is the burst emission anisotropy factor. The main difference is that the observed light curves do not show the distinct two-stage rise of the models. This may reflect the time for burning to spread over the stellar surface or may indicate that our treatment of heat transport or nuclear physics needs to be revised. The trends in burst properties with accretion rate are well reproduced by our spherically symmetric models that include chemical and thermal inertia from the ashes of previous bursts. Changes in the covering fraction of the accreted fuel are not required.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><issn>1538-4357</issn><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kc9Kw0AQxoMoWKs-w3pQDxLd2T_5460WbQsVRSt6W7ab3RJJs3G3PeTmO_iGPokJLbSCeJqB-X3f8M0EwTHgS8BJdMUJ54TsBB3gNAkZ5fHuVr8fHHj_jjFmJE07weu9zXThkTVoUlcajdBb-CRrdLN0fuGRcXaOBs8IEhJ9f34Rdo166NHZqW4VrgqbXmnv0bDOnJ3pshWWeTk7DPaMLLw-Wtdu8HJ3O-kPw_HDYNTvjUPFAC_CmEKa4ExnFCJJAabcMElkTDMOFExiaMQ1cE1jNaUyUUAiBjrTvAnaSA3tBucr38rZj6X2CzHPvdJFIUttl17EjJKERTRuyLN_SYJTIEm0BSpnvXfaiMrlc-lqAVi0FxarCzfg6dpReiUL42Spcr-h05Szxq_hLlZcbqvNtHmIaB8iohgEEWNgIKqsTXTyB_178w9FK44f</recordid><startdate>20071220</startdate><enddate>20071220</enddate><creator>Heger, Alexander</creator><creator>Cumming, Andrew</creator><creator>Galloway, Duncan K</creator><creator>Woosley, Stanford E</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20071220</creationdate><title>Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning</title><author>Heger, Alexander ; Cumming, Andrew ; Galloway, Duncan K ; Woosley, Stanford E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-731980ded316a311b5f4a2a73d5131f8f365e15e37cb3a8c12641ede5086319f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heger, Alexander</creatorcontrib><creatorcontrib>Cumming, Andrew</creatorcontrib><creatorcontrib>Galloway, Duncan K</creatorcontrib><creatorcontrib>Woosley, Stanford E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heger, Alexander</au><au>Cumming, Andrew</au><au>Galloway, Duncan K</au><au>Woosley, Stanford E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning</atitle><jtitle>The Astrophysical journal</jtitle><date>2007-12-20</date><risdate>2007</risdate><volume>671</volume><issue>2</issue><spage>L141</spage><epage>L144</epage><pages>L141-L144</pages><issn>1538-4357</issn><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst light curves using multizone models that follow the nucleosynthesis (ap and rp-processes) with an extensive nuclear reaction network. The theoretical and observed burst light curves show remarkable agreement. The models naturally explain the slow rise (duration approximately 5 s) and long tails ( approximately 100 s) of these bursts, as well as their dependence on mass accretion rate. This comparison provides further evidence for solar metallicity in the accreted material in this source and gives a distance to the source of 6.07 plus or minus 0.18 kpc [unk], where [unk] is the burst emission anisotropy factor. The main difference is that the observed light curves do not show the distinct two-stage rise of the models. This may reflect the time for burning to spread over the stellar surface or may indicate that our treatment of heat transport or nuclear physics needs to be revised. The trends in burst properties with accretion rate are well reproduced by our spherically symmetric models that include chemical and thermal inertia from the ashes of previous bursts. Changes in the covering fraction of the accreted fuel are not required.</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/525522</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1538-4357
ispartof The Astrophysical journal, 2007-12, Vol.671 (2), p.L141-L144
issn 1538-4357
0004-637X
1538-4357
language eng
recordid cdi_proquest_miscellaneous_20912867
source Institute of Physics Open Access Journal Titles
subjects Astronomy
Earth, ocean, space
Exact sciences and technology
title Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20of%20Type%20I%20X-Ray%20Bursts%20from%20GS%201826%E2%80%9324:%20A%20Probe%20of%20rp-Process%20Hydrogen%20Burning&rft.jtitle=The%20Astrophysical%20journal&rft.au=Heger,%20Alexander&rft.date=2007-12-20&rft.volume=671&rft.issue=2&rft.spage=L141&rft.epage=L144&rft.pages=L141-L144&rft.issn=1538-4357&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/525522&rft_dat=%3Cproquest_O3W%3E743284637%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20912867&rft_id=info:pmid/&rfr_iscdi=true