Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning
The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst light curves using multizone models that follow the nucleosynthesis (ap and rp-processes) with a...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2007-12, Vol.671 (2), p.L141-L144 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | L144 |
---|---|
container_issue | 2 |
container_start_page | L141 |
container_title | The Astrophysical journal |
container_volume | 671 |
creator | Heger, Alexander Cumming, Andrew Galloway, Duncan K Woosley, Stanford E |
description | The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst light curves using multizone models that follow the nucleosynthesis (ap and rp-processes) with an extensive nuclear reaction network. The theoretical and observed burst light curves show remarkable agreement. The models naturally explain the slow rise (duration approximately 5 s) and long tails ( approximately 100 s) of these bursts, as well as their dependence on mass accretion rate. This comparison provides further evidence for solar metallicity in the accreted material in this source and gives a distance to the source of 6.07 plus or minus 0.18 kpc [unk], where [unk] is the burst emission anisotropy factor. The main difference is that the observed light curves do not show the distinct two-stage rise of the models. This may reflect the time for burning to spread over the stellar surface or may indicate that our treatment of heat transport or nuclear physics needs to be revised. The trends in burst properties with accretion rate are well reproduced by our spherically symmetric models that include chemical and thermal inertia from the ashes of previous bursts. Changes in the covering fraction of the accreted fuel are not required. |
doi_str_mv | 10.1086/525522 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_20912867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743284637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-731980ded316a311b5f4a2a73d5131f8f365e15e37cb3a8c12641ede5086319f3</originalsourceid><addsrcrecordid>eNp9kc9Kw0AQxoMoWKs-w3pQDxLd2T_5460WbQsVRSt6W7ab3RJJs3G3PeTmO_iGPokJLbSCeJqB-X3f8M0EwTHgS8BJdMUJ54TsBB3gNAkZ5fHuVr8fHHj_jjFmJE07weu9zXThkTVoUlcajdBb-CRrdLN0fuGRcXaOBs8IEhJ9f34Rdo166NHZqW4VrgqbXmnv0bDOnJ3pshWWeTk7DPaMLLw-Wtdu8HJ3O-kPw_HDYNTvjUPFAC_CmEKa4ExnFCJJAabcMElkTDMOFExiaMQ1cE1jNaUyUUAiBjrTvAnaSA3tBucr38rZj6X2CzHPvdJFIUttl17EjJKERTRuyLN_SYJTIEm0BSpnvXfaiMrlc-lqAVi0FxarCzfg6dpReiUL42Spcr-h05Szxq_hLlZcbqvNtHmIaB8iohgEEWNgIKqsTXTyB_178w9FK44f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20912867</pqid></control><display><type>article</type><title>Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning</title><source>Institute of Physics Open Access Journal Titles</source><creator>Heger, Alexander ; Cumming, Andrew ; Galloway, Duncan K ; Woosley, Stanford E</creator><creatorcontrib>Heger, Alexander ; Cumming, Andrew ; Galloway, Duncan K ; Woosley, Stanford E</creatorcontrib><description>The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst light curves using multizone models that follow the nucleosynthesis (ap and rp-processes) with an extensive nuclear reaction network. The theoretical and observed burst light curves show remarkable agreement. The models naturally explain the slow rise (duration approximately 5 s) and long tails ( approximately 100 s) of these bursts, as well as their dependence on mass accretion rate. This comparison provides further evidence for solar metallicity in the accreted material in this source and gives a distance to the source of 6.07 plus or minus 0.18 kpc [unk], where [unk] is the burst emission anisotropy factor. The main difference is that the observed light curves do not show the distinct two-stage rise of the models. This may reflect the time for burning to spread over the stellar surface or may indicate that our treatment of heat transport or nuclear physics needs to be revised. The trends in burst properties with accretion rate are well reproduced by our spherically symmetric models that include chemical and thermal inertia from the ashes of previous bursts. Changes in the covering fraction of the accreted fuel are not required.</description><identifier>ISSN: 1538-4357</identifier><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1086/525522</identifier><identifier>CODEN: ASJOAB</identifier><language>eng</language><publisher>Chicago, IL: IOP Publishing</publisher><subject>Astronomy ; Earth, ocean, space ; Exact sciences and technology</subject><ispartof>The Astrophysical journal, 2007-12, Vol.671 (2), p.L141-L144</ispartof><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-731980ded316a311b5f4a2a73d5131f8f365e15e37cb3a8c12641ede5086319f3</citedby><cites>FETCH-LOGICAL-c410t-731980ded316a311b5f4a2a73d5131f8f365e15e37cb3a8c12641ede5086319f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1086/525522/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27628,27924,27925,53931</link.rule.ids><linktorsrc>$$Uhttp://iopscience.iop.org/1538-4357/671/2/L141$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19954673$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Heger, Alexander</creatorcontrib><creatorcontrib>Cumming, Andrew</creatorcontrib><creatorcontrib>Galloway, Duncan K</creatorcontrib><creatorcontrib>Woosley, Stanford E</creatorcontrib><title>Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning</title><title>The Astrophysical journal</title><description>The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst light curves using multizone models that follow the nucleosynthesis (ap and rp-processes) with an extensive nuclear reaction network. The theoretical and observed burst light curves show remarkable agreement. The models naturally explain the slow rise (duration approximately 5 s) and long tails ( approximately 100 s) of these bursts, as well as their dependence on mass accretion rate. This comparison provides further evidence for solar metallicity in the accreted material in this source and gives a distance to the source of 6.07 plus or minus 0.18 kpc [unk], where [unk] is the burst emission anisotropy factor. The main difference is that the observed light curves do not show the distinct two-stage rise of the models. This may reflect the time for burning to spread over the stellar surface or may indicate that our treatment of heat transport or nuclear physics needs to be revised. The trends in burst properties with accretion rate are well reproduced by our spherically symmetric models that include chemical and thermal inertia from the ashes of previous bursts. Changes in the covering fraction of the accreted fuel are not required.</description><subject>Astronomy</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><issn>1538-4357</issn><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kc9Kw0AQxoMoWKs-w3pQDxLd2T_5460WbQsVRSt6W7ab3RJJs3G3PeTmO_iGPokJLbSCeJqB-X3f8M0EwTHgS8BJdMUJ54TsBB3gNAkZ5fHuVr8fHHj_jjFmJE07weu9zXThkTVoUlcajdBb-CRrdLN0fuGRcXaOBs8IEhJ9f34Rdo166NHZqW4VrgqbXmnv0bDOnJ3pshWWeTk7DPaMLLw-Wtdu8HJ3O-kPw_HDYNTvjUPFAC_CmEKa4ExnFCJJAabcMElkTDMOFExiaMQ1cE1jNaUyUUAiBjrTvAnaSA3tBucr38rZj6X2CzHPvdJFIUttl17EjJKERTRuyLN_SYJTIEm0BSpnvXfaiMrlc-lqAVi0FxarCzfg6dpReiUL42Spcr-h05Szxq_hLlZcbqvNtHmIaB8iohgEEWNgIKqsTXTyB_178w9FK44f</recordid><startdate>20071220</startdate><enddate>20071220</enddate><creator>Heger, Alexander</creator><creator>Cumming, Andrew</creator><creator>Galloway, Duncan K</creator><creator>Woosley, Stanford E</creator><general>IOP Publishing</general><general>University of Chicago Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20071220</creationdate><title>Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning</title><author>Heger, Alexander ; Cumming, Andrew ; Galloway, Duncan K ; Woosley, Stanford E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-731980ded316a311b5f4a2a73d5131f8f365e15e37cb3a8c12641ede5086319f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Astronomy</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heger, Alexander</creatorcontrib><creatorcontrib>Cumming, Andrew</creatorcontrib><creatorcontrib>Galloway, Duncan K</creatorcontrib><creatorcontrib>Woosley, Stanford E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Heger, Alexander</au><au>Cumming, Andrew</au><au>Galloway, Duncan K</au><au>Woosley, Stanford E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning</atitle><jtitle>The Astrophysical journal</jtitle><date>2007-12-20</date><risdate>2007</risdate><volume>671</volume><issue>2</issue><spage>L141</spage><epage>L144</epage><pages>L141-L144</pages><issn>1538-4357</issn><issn>0004-637X</issn><eissn>1538-4357</eissn><coden>ASJOAB</coden><abstract>The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst light curves using multizone models that follow the nucleosynthesis (ap and rp-processes) with an extensive nuclear reaction network. The theoretical and observed burst light curves show remarkable agreement. The models naturally explain the slow rise (duration approximately 5 s) and long tails ( approximately 100 s) of these bursts, as well as their dependence on mass accretion rate. This comparison provides further evidence for solar metallicity in the accreted material in this source and gives a distance to the source of 6.07 plus or minus 0.18 kpc [unk], where [unk] is the burst emission anisotropy factor. The main difference is that the observed light curves do not show the distinct two-stage rise of the models. This may reflect the time for burning to spread over the stellar surface or may indicate that our treatment of heat transport or nuclear physics needs to be revised. The trends in burst properties with accretion rate are well reproduced by our spherically symmetric models that include chemical and thermal inertia from the ashes of previous bursts. Changes in the covering fraction of the accreted fuel are not required.</abstract><cop>Chicago, IL</cop><pub>IOP Publishing</pub><doi>10.1086/525522</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1538-4357 |
ispartof | The Astrophysical journal, 2007-12, Vol.671 (2), p.L141-L144 |
issn | 1538-4357 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_miscellaneous_20912867 |
source | Institute of Physics Open Access Journal Titles |
subjects | Astronomy Earth, ocean, space Exact sciences and technology |
title | Models of Type I X-Ray Bursts from GS 1826–24: A Probe of rp-Process Hydrogen Burning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A50%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20of%20Type%20I%20X-Ray%20Bursts%20from%20GS%201826%E2%80%9324:%20A%20Probe%20of%20rp-Process%20Hydrogen%20Burning&rft.jtitle=The%20Astrophysical%20journal&rft.au=Heger,%20Alexander&rft.date=2007-12-20&rft.volume=671&rft.issue=2&rft.spage=L141&rft.epage=L144&rft.pages=L141-L144&rft.issn=1538-4357&rft.eissn=1538-4357&rft.coden=ASJOAB&rft_id=info:doi/10.1086/525522&rft_dat=%3Cproquest_O3W%3E743284637%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20912867&rft_id=info:pmid/&rfr_iscdi=true |